• Title/Summary/Keyword: stenosed artery

Search Result 32, Processing Time 0.026 seconds

Flow comparison between Stenosed Coronary and Abdominal Arteries (협착된 관상동맥과 복부 대동맥의 유동 특성 비교)

  • Kim, M.C.;Lee, C.S.;Kim, C.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.585-590
    • /
    • 2001
  • The hemodynamic characteristics were compared using commercial CFD code for the stenosed coronary and abdominal arteries. Numerical calculations were carried out in the axisymmetric arteries over the stenotic diameter ratios ranging from 0.25 to 0.875 (6 cases) employing the typical physiological flow conditions. In case of the coronary artery, there was only one recirculation zone observed distal to the stenosis throat during the major portion of the period. However, in case of the abdominal aorta, there were complex recirculation regions found proximal and distal to stenosis throat. For both models, the wall shear stresses(WSS) increased sharply in the converging stenosis, reaching a peak just upstream of the throat, and became negative or low values in the post-stenotic recirculation region. As the results, the oscillatory shear index(OSI) was abruptly increased at the stenosis throat. For the coronary stenosis model, the second peak in the OSI was observed distal to the stenosis. The distance between the first peak and the second peak was increased as the degree of the stenosis was raised. On the orther hand, the abdominal stenosis model showed a complex oscillatory behavior in the OSI index and did not showed such a strong second peak. As the degree of stenosis was increased, recirculation regions of the both arteries were extended much longer and flow pattern became more complex.

  • PDF

Numerical Analysis of Transitional Flow in a Stenosed Carotid Artery (협착된 경동맥내 천이 유동 수치 해석)

  • Kim, Dongmin;Hwang, Jinyul;Min, Too-Jae;Jo, Won-Min
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.1
    • /
    • pp.52-63
    • /
    • 2022
  • Direct numerical simulation of blood flow in a stenosed, patient-specific carotid artery was conducted to explore the transient behavior of blood flow with special emphasis on the wall-shear stress distribution over the transition region. We assumed the blood as an incompressible Newtonian fluid, and the vessel was treated as a solid wall. The pulsatile boundary condition was applied at the inlet of the carotid. The Reynolds number is 884 based on the inlet diameter, and the maximum flow rate and the corresponding Womersley number is approximately 5.9. We found the transitional behavior during the acceleration and deceleration phases. In order to quantitatively examine the wall-shear stress distribution over the transition region, the probability density function of the wall-shear stress was computed. It showed that the negative wall-shear stress events frequently occur near peak systole. In addition, the oscillatory shear stress index was used to further analyze the relationship with the negative wall-shear stress appearing in the systolic phase.

Computational Analysis on Calcium Dynamics of Vascular Endothelial Cell Modulated by Physiological Shear Stress

  • Kang, Hyun-Goo;Lee, Eun-Seok;Shim, Eun-Bo;Chnag, Keun-Shik
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • Flow-induced dilation of blood vessel is the result of a series of bioreaction in vascular endothelial cells(VEC). Shear stress change by blood flow in human artery or vein is sensed by the mechanoreceptor and responsible for such a chain reaction. The inositol(1,4,5)-triphophate($IP_3$) is produced in the first stage to elevate permeability of the intercellular membrane to calcium ions by which the cytosolic calcium concentration is consequently increased. This intracellular calcium transient triggers synthesis of EDRF and prostacyclin. The mathematical model of this VEC calcium dynamics is reproduced from the literature. We then use the Computational Fluid Dynamics(CFD) technique to investigate the blood stream dictating the VEC calcium dynamics. The pulsatile blood flow in a stenosed blood vessel is considered here as a part of study on thrombogenesis. We calculate the pulsating shear stress (thus its temporal change) distributed over the stenosed artery that is implemented to the VEC calcium dynamics model. It has been found that the pulsatile shear stress induces larger intracellular $Ca^{2+}$ transient plus much higher amount of EDRF and prostacyclin release in comparison with the steady shear stress case. It is concluded that pulsatility of the physiological shear stress is important to keep the vasodilation function in the stenosed part of the blood vessel.

  • PDF

Surgical Correction of Pulmonary Atresia with VSD -Report of a Case- (심실 중격 결손증을 동반한 폐동맥 폐쇄증의 외과적 교정)

  • 김대영
    • Journal of Chest Surgery
    • /
    • v.28 no.11
    • /
    • pp.1045-1048
    • /
    • 1995
  • Pulmonary atresia with VSD is uncommon congenital anomaly with high mortality in neonatal period.Recently we experienced surgical correction of pulmonary atresia with VSD. The case was 2 month old male patient diagnosed as pulmonary atresia with VSD and PDA. Atretic pulmonary artery segment from Rt ventricular infundibulum to pulmonary artery was lcm in length. The pulmonary trunk tapered toward Right ventricular infundibulum and resulted in blind pouch with diameter of lmm. The left pulmonary artery was stenosed at just proximal and distal part to which PDA was connected. Total correction was undertaken which consisted of PDA ligation, dacron patch closure of VSD, establishment of continuity between right ventricle and pulmonary artery with autogenous pericardium. Postoperative systolic fight ventricular pressure and left ventricular pressure ratio was 0.7. In patient with pulmonary atresia with VSD it is advisable to perform a corrective operation, whenever the size and anatomy of pulmonary artery are acceptable for it.

  • PDF

Surgical Treatment of Takayasu`s Arteritis with Renovascular Hypertension (신성고혈압을 동반한 Takayasu 동맥염의 수술치험 1)

  • 권우석
    • Journal of Chest Surgery
    • /
    • v.20 no.1
    • /
    • pp.171-176
    • /
    • 1987
  • Takayasu`s arteritis is one of chronic inflammatory disease characteristically involving the aorta and its major branches. Symptoms and signs of the disease are various depending on the involved area. We experienced a surgical case of Takayasu`s arteritis mainly involving both renal arteries with renovascular hypertension in a 13 year old girl. Hypertension was not controlled by medical treatment including diuretics and captopril [160/140 mmHg]. Aortogram showed severely stenosed right renal artery, nearly obstructed left renal artery and not visulalized superior mesenteric artery. Angioplasty was performed for the right renal artery but aorta-renal bypass graft with greater saphenous vein was inevitable for the left renal artery. Blood pressure was controlled sufficiently with some adjunct of captopril postoperatively [130/90 mmHg]. While the patient was discharged with much improvement, she was lost follow up and died of not identified definitive cause 3 months later.

  • PDF

Numerical analysis of the blood flow in coronary artery combining CFD method with the vascular system modeling (혈관계 시스템 모델과 CFD의 결합을 통한 관상동맥 내 혈류의 수치적 해석)

  • Shim Eun Bo;Park Myung Soo;Ko Hyung Jong;Kim Kyung Moon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.152-157
    • /
    • 1999
  • For the simulation of the blood flow in coronary artery, the system modeling of coronary hemodynamics is combined with CFD technique. The blood flow in coronary artery interacts with the global coronary circulation. Especially in case of the coronary artery with stenosis, the interaction plays an important role in the hemodynamics of the circulation. In this study we present a combined numerical approach using both the CFD technique for flow simulation and the global system model of coronary circulation. We use a lumped parameter model for the global simulation of coronary circulation whereas the finite element method is employed to compute the viscous flow field in stenosed coronary artery, The time variation of the pressure drop due to stenosis is obtained from the proposed numerical method. Numerical results shows that the flow resistance and pressure drop due to stenosis has a relatively large value in systole.

  • PDF

Hemodynamic Stress Changes due to Compensatory Remodelling of Stenosed Coronary Artery (협착이 발생된 관상동맥의 보상적 재형성에 따른 혈류역학적 응력변화)

  • Cho, Min-Tae;Suh, Sang-Ho;Lee, Byoung-Kwon;Kwon, Hyuck-Moon;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.529-532
    • /
    • 2001
  • The purposes of the present study are to investigate hemodynamic characteristics and to define shear-sensitive remodeling in the stenosed coronary models. Two models for the compensatory remodelling used for this research are a pre-stenotic dilation and a post-stenotic dilation models for the computer simulation. The peak wall shear stress on the post-stenotic model is higher than that of the pre-stenotic model. Two recirculation zones are generated in the pre-stenotic model, and the zones in the pre-stenotic model are smaller than those in the post-stenotic model. Variation of the wall shear stress in the pre-stenotic model is lower than that in the post-stenotic model. In computer simulation with the post-stenotic model, higher temporal and spatial shear fluctuation and stress suggested shear-sensitive remodeling. Shear-sensitive remodeling may be associated with the increased risk of plaque rupture, the underlying cause of acute coronary syndromes, and sudden cardiac death.

  • PDF

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery

  • Sung, Kun-Hyuk;Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • A numerical analysis is performed to investigate the effect of rotation on the blood flow characteristics with four different angular velocities. The artery has a cylindrical shape with 50% stenosis rate symmetrically distributed at the middle. Blood flow is considered a non-Newtonian fluid. Using the Carreau model, we apply the pulsatile velocity profile at the inlet boundary. The period of the heart beat is one second. In comparison with no-rotation case, the flow recirculation zone (FRZ) contracts and its duration is reduced in axially rotating artery. Also wall shear stress is larger after the FRZ disappears. Although the geometry of artery is axisymmetry, the spiral wave and asymmetric flow occur clearly at the small rotation rate. It is caused that the flow is influenced by the effects of the rotation and the stenosis at same time.

Fluid-structure interactions of physiological flow in stenosed artery

  • Buriev, Bahtiyor;Kim, Tae-Dong;Seo, Tae-Won
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2009
  • Atherosclerosis is a disease that narrows, thickens, hardens, and restructures a blood vessel due to substantial plaque deposit. The geometric models of the considered stenotic blood flow are three different types of constriction of cross-sectional area of blood vessel; 25%, 50%, and 75% of constriction. The computational model with the fluid-structure interaction is introduced to investigate the wall shear stresses, blood flow field and recirculation zone in the stenotic vessels. The velocity profile in a compliant stenotic artery with various constrictions is subjected to prescribed physiologic waveform. The computational simulations were performed, in which the physiological flow through a compliant axisymmetric stenotic blood vessel was solved using commercial software ADINA 8.4 developed by finite element method. We demonstrated comparisons of the wall shear stress with or without the fluid-structure interaction and their velocity profiles under the physiological flow condition in the compliant stenotic artery. The present results enhance our understanding of the hemodynamic characteristics in a compliant stenotic artery.

Effects of the Geometric Dimensions on the Hemodynamics of Aorto-Coronary Bypass (Aorto-Coronary Bypass의 기하학적 형상이 관상동맥의 혈류특성에 미치는 영향)

  • Suh, S.H.;Roh, H.W.;Yoo, S.S.;Kwon, H.M.;Kim, D.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.254-257
    • /
    • 1996
  • An aorto-coronary bypass graft is frequently adopted for the interventional therapy of the diseased atherosclerotic coronary artery grafting. The bypass artery is often occluded due to restenosis and/or anastomotic neointimal fibrous hyperplasia after bypass graft. The optimal aorto-coronary bypass procedure must be studied in order to improve patency rate for the arterial bypass techniques. The objective of this study is to investigate the influences of geometric dimensions of bypass on the hemodynamics around the anastomosis in the stenosed coronary artery with aorto-coronary bypass.

  • PDF