• Title/Summary/Keyword: stemwood

Search Result 15, Processing Time 0.023 seconds

Effects of Nitrogen and Phosphorus Fertilization on Aboveground Biomass and Distribution of Nutrient Content of Pinus rigida and Larix kaempferi Plantations in Yangpyeong area, Gyeonggi Province (질소와 인 시비가 경기도 양평지역 리기다소나무와 낙엽송 조림지의 지상부 생체량과 양분농도에 미치는 영향)

  • 이임균;손요환;오정수
    • Journal of Korea Foresty Energy
    • /
    • v.23 no.1
    • /
    • pp.1-18
    • /
    • 2004
  • Effects of nitrogen and phosphorus fertilization on aboveground biomass and distribution of nutrient content in tree components were determined in adjacent 41-year-old plantations of Pinus rigida Miller and Larix kaempferi Gordon on a similar soil in Yangpyeong, Gyeonggi Province. Fertilizer was experimentally applied at the three levels [control(C), 200 N kg/ha+25 P kg/ha(LNP), and 400 N kg/ha+50 P kg/ha(HNP)] in June, 1996. The results obtained from this study were summarized as follows: Total aboveground biomass of P. rigida and L. kaempferi stands was 149, 145ton/ha for control, 166, 149ton/ha for LNP, and 152, 170ton/ha for HNP, respectively, and did not differ between the tree species. Aboveground biomass of P. rigida and L. kaempferi plantations were distributed as follows: stemwood>branch>stembark>foliage. Biomass of understory vegetation was 1,111kg/ha for P. rigida and 907kg/ha for L. kaempferi, and comprised 0.6~0.7% of the total aboveground biomass of the plantations. The concentrations of all nutrients(N, P, K, Ca, Mg) were generally higher in L. kaempferi than in P. rigida because of high nutrient uptake characteristics of Larix spp. Nutrient concentrations in tree components of P. rigida and L. kaempferi plantations were not significantly different among treatments, whereas they were significantly different between species and among tree components. The nutrient concentration in tree components of both tree species decreased in order of foliage>branch>stembark>stemwood. The contents of all nutrients were higher in the fertilized plots than in the control plots, generally the highest in LNP for P. rigida and in HNP for L. kaempferi. Total nutrient(N+P+K+Ca+Mg) contents of aboveground biomass were 703kg/ha for P. rigida and 869kg/ha for L. kaempferi, respectively.

  • PDF

Anatomical and Physical Properties of Pitch Pine (Pinus rigida Miller) - The Characteristics of Stem, Branch, Root and Topwood - (리기다소나무(Pinus rigida Miller)의 목재해부학적(木材解剖學的) 및 물리학적성질(物理學的性質)에 관(關)한 연구(硏究) - 간(幹), 지(枝), 근(根), 초두목(梢頭木)의 특성(特性)을 중심(中心)으로 -)

  • Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.16 no.1
    • /
    • pp.33-62
    • /
    • 1972
  • Pitch pine (Pinus rigida Miller) in Korea has become one of the major silvicultural species for many years since it was introduced from the United States of America in 1907. To attain the more rational wood utilization basical researches on wood properties are primarily needed, since large scale of timber production from Pitch Pine trees has now been accomplishing in the forested areast hroughout the country. Under the circumustances, this experiment was carried out to study the wood anatomical, physical and mechanical properties of Pitch Pine grown in the country. Materials used in this study had been prepared by cutting the selected pitch pine trees from the Seoul National University Forests located in Suwon. To obtain and compare the anatomical and physical properties of the different parts of tree such as stem, branch, top and rootwood, this study had been divided into two categories (anatomical and physical). For the anatomical study macroscopical and microscopical features such as annual ring, intercellular cannal, ray, tracheid, ray trachid, ray parenchyma cell and pit etc. were observed and measured by the different parts (stem, branch, root and topwood) of tree. For the physical and mechanical properties the moisture content of geen wood, wood specific gravity, shrinkage, compression parallel to the grain, tension parallel and perpendicular to the grain, radial and tangential shear, bending, cleavage and hardness wree tested. According to the results this study may be concluded as follows: 1. The most important comparable features in general properties of wood among the different parts of tree were distinctness and width of annual ring, transition from spring to summerwood, wood color, odor and grain etc. In microscopical features the sizes of structural elements of wood were comparable features among the parts of tree. Among their features, length, width and thickness of tracheids, resin ducts and ray structures were most important. 2. In microscopical features among the different parts of tree stem and topwood were shown simillar reults in tissues. However in rootwood compared with other parts on the tangential surface distinctly larger ray structures were observed and measured. The maximum size of unseriate ray was attained to 27 cell ($550{\mu}$) height in length and 35 microns in width. Fusiform rays were formed occasionally the connected ray which contain one or several horizontal cannals. Branchwood was shown the same features like stemwood but the measured values were very low in comparing with other parts of tree. 3. Trachid length measured among the different parts of tree were shown largest in stem and shortest in branchwood. In comparing the tracheid length among the parts the differences were not shown only between stem and rootwood, but shown between all other parts of tree. Trachid diameters were shown widest in rootwood and narrowest in branchwood, and the differences among the different parts were not realized. Wall thickness were shown largest value in rootwood and smallest in branchwood, and the differences were shown between root and top or branchwood, and between stem and branch or top wood, but not shown between other parts of tree. 4. Moisture contents of green wood were shown highest in topwood and lowest in heartwood of stem. The differences among the different parts were recognized between top or heartwood and other parts of tree, but not between root and branchwood or root and sapwood. 5. Wood specific gravities were shown highest in stem and next order root and branchwood, but lowest in topwood. The differences were shown clearly between stemwood and other parts of tree, but not root and branchwood. However the significant difference is realized as most lowest value in topwood. 6. In compression strength parallel to the grain compared among the different parts of tree at the 14 percent of moisture content, highest strength was appeared in stem, next order branch and rootwood, but lowest in topwood. 7. In bending strength compared among the different parts of tree at the 14 percent of moisture content clearly highest strength was shown in branchwood, next order stem and root, but lowest in topwood. Though the branchwood has lower specific gravity than stemwood it was shown clearly high bending strength.

  • PDF

Above- and Below-ground Biomass and Energy Content of Quercus mongolica (신갈나무의 지상부와 지하부 바이오매스 및 에너지량)

  • Kwon, Ki-Cheol;Lee, Don-Koo
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Quercus mongolica is the most common hardwood species distributed in Korea. This study was conducted to investigate the biomass and energy content of the belowground biomass of Q. mongolica and to obtain the regression equation for estimating root biomass using the tree height and diameter at breast height (DBH). A total of 18 sample trees ranging 20 to 60 year-old were selected in the study sites. Tree height, DBH, age, and weight of stemwood, sapwood, heartwood, stembark, branch, leaf, and root were measured for total biomass. The highly positive correlation was shown between the biomass of most of variables of aboveground components and root biomass. The regression equation of the aboveground total biomass was $log\;W_A\;=\;1.469\;+\;0.992\;log\;D^2H\;(R^2 =0.99)$. The regression equation of the belowground biomass was $log\;W_R\;=\;1.527\;+\;0.808\;log\;D^2H\;(R^2\;=\;0.97)$. The mean energy contents of sapwood, heartwood, bark, leaf, and root were 19,594 J/g DW, 19,571 J/g DW, 19,999 J/g DW, 20,664 J/g DW, and 19,273 J/g DW, respectively. The results obtained from this study can be used to estimate biomass and energy content of belowground using easily measurable variables such as DBH and tree height ranging from 20 to 60-year-old Q. mongolica stands.

  • PDF

Biomass Production of Machilus thunbergii S. et Z. Stand at Bogil Island in Korea (후박나무림(林)의 물질생산량(物質生産量)에 관(關)하여)

  • Lee, Jyung Seok;Kim, Choon Sig
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.1
    • /
    • pp.10-16
    • /
    • 1988
  • This study was carried out to estimate the aboveground-biomass of Machilus thunbergii, warm-temperature evergreen broad leaved tree, growing in the seashore near Bogil island located at the southern part of the Korean peninsula. The bark of M. thunbergii was used for medicine in the Korea. The results were summarized as follows : 1) The aboveground-biomass was 123.708 tons/ha and the biomass of branch bark greater than 3cm in branch diameter was 1/5 of total bark mass(8.095 tons/ha). Dry matter density was $1.77ha/m^3$ and leaf area index 8.08. 2) Net production of the stand was estimated as 16.051 tons/ha/yr and the leaf was the greatest, followed by stemwood, branchwood, stem-bark and branch-bark. 3) The net assimilation rate of the stand was 1.384 kg/kg/yr. The efficiency of leaves to produce stem was 0.451 kg/kg/yr and that of bark 0.051 kg/kg/yr. Biomass accumulation ratio was 7.707 kg/kg/yr.

  • PDF

Aboveground Biomass Estimation of Pinus densiflora Stands in the Western Gyeongnam Regions (경남 서부지역 소나무임분의 지상부 Biomass에 관한 연구)

  • Jeong, Jae-Yeob;Cho, Hyun-Jong;Seo, Jeong-Hyun;Kim, Rae-Hyun;Son, Young-Mo;Lee, Kyeong-Hak;Kim, Choon-Sig
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.62-67
    • /
    • 2010
  • This study was carried out to develop local allometric biomass regression equations and to estimate aboveground biomass of red pine (Pinus densiflora S. et Z.) stands among three regions (Hadong, Hamyang, Sancheong) from the western regions of Gyeongnam province. We selected three natural red pine stands with similar stand ages (about 40-year-old) from each region. The allometric regression equations were significant in all tree components (P<0.05) and the determination of coefficient ($R^2$) ranged 0.87 from 0.99. There was a significant difference (P<0.05) in the biomass of tree components among three regions. The biomass was 173.3 Mg/ha in Hadong, 131.0 Mg/ha in Sancheong, and 66.5 Mg/ha in Hamyang. The proportion of biomass was 70.4-77.1% in stemwood, 10.9-15.2% in branch, 8.9-10.4% in stembark, and 3.1-4.4% in needle. The results indicated that red pine stands in the western Gyeongnam regions showed the significant difference of aboveground biomass which was attributed to site quality and stand density.