• Title/Summary/Keyword: stem cell therapy

Search Result 447, Processing Time 0.027 seconds

Altered Cell to Cell Communication, Autophagy and Mitochondrial Dysfunction in a Model of Hepatocellular Carcinoma: Potential Protective Effects of Curcumin and Stem Cell Therapy

  • Tork, Ola M;Khaleel, Eman F;Abdelmaqsoud, Omnia M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8271-8279
    • /
    • 2016
  • Background: Hepato-carcinogenesis is multifaceted in its molecular aspects. Among the interplaying agents are altered gap junctions, the proteasome/autophagy system, and mitochondria. The present experimental study was designed to outline the roles of these players and to investigate the tumor suppressive effects of curcumin with or without mesenchymal stem cells (MSCs) in hepatocellular carcinoma (HCC). Materials and Methods: Adult female albino rats were divided into normal controls and animals with HCC induced by diethyl-nitrosamine (DENA) and $CCl_4$. Additional groups treated after HCC induction were: Cur/HCC which received curcumin; MSCs/HCC which received MSCs; and Cur+MSCs/HCC which received both curcumin and MSCs. For all groups there were histopathological examination and assessment of gene expression of connexin43 (Cx43), ubiquitin ligase-E3 (UCP-3), the autophagy marker LC3 and coenzyme-Q10 (Mito.Q10) mRNA by real time, reverse transcription-polymerase chain reaction, along with measurement of LC3II/LC3I ratio for estimation of autophagosome formation in the rat liver tissue. In addition, the serum levels of ALT, AST and alpha fetoprotein (AFP), together with the proinflammatory cytokines $TNF{\alpha}$ and IL-6, were determined in all groups. Results: Histopathological examination of liver tissue from animals which received DENA-$CCl_4$ only revealed the presence of anaplastic carcinoma cells and macro-regenerative nodules. Administration of curcumin, MSCs; each alone or combined into rats after induction of HCC improved the histopathological picture. This was accompanied by significant reduction in ${\alpha}$-fetoprotein together with proinflammatory cytokines and significant decrease of various liver enzymes, in addition to upregulation of Cx43, UCP-3, LC3 and Mito.Q10 mRNA. Conclusions: Improvement of Cx43 expression, nonapoptotic cell death and mitochondrial function can repress tumor growth in HCC. Administration of curcumin and/or MSCs have tumor suppressive effects as they can target these mechanisms. However, further research is still needed to verify their effectiveness.

Attenuation of Postischemic Genomic Alteration by Mesenchymal Stem Cells: a Microarray Study

  • Choi, Chunggab;Oh, Seung-Hun;Noh, Jeong-Eun;Jeong, Yong-Woo;Kim, Soonhag;Ko, Jung Jae;Kim, Ok-Joon;Song, Jihwan
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.337-344
    • /
    • 2016
  • Intravenous administration of mesenchymal stem cells (IV-MSC) protects the ischemic rat brain in a stroke model, but the molecular mechanism underlying its therapeutic effect is unclear. We compared genomic profiles using the mRNA microarray technique in a rodent stroke model. Rats were treated with $1{\times}10^6$ IV-MSC or saline (sham group) 2 h after transient middle cerebral artery occlusion (MCAo). mRNA microarray was conducted 72 h after MCAo using brain tissue from normal rats (normal group) and the sham and MSC groups. Predicted pathway analysis was performed in differentially expressed genes (DEGs), and functional tests and immunohistochemistry for inflammation-related proteins were performed. We identified 857 DEGs between the sham and normal groups, with the majority of them (88.7%) upregulated in sham group. Predicted pathway analysis revealed that cerebral ischemia activated 10 signaling pathways mainly related to inflammation and cell cycle. IV-MSC attenuated the numbers of dysregulated genes in cerebral ischemia (118 DEGs between the MSC and normal groups). In addition, a total of 218 transcripts were differentially expressed between the MSC and sham groups, and most of them (175/218 DEGs, 80.2%) were downregulated in the MSC group. IV-MSC reduced the number of Iba-$1^+$ cells in the peri-infarct area, reduced the overall infarct size, and improved functional deficits in MCAo rats. In conclusion, transcriptome analysis revealed that IV-MSC attenuated postischemic genomic alterations in the ischemic brain. Amelioration of dysregulated inflammation- and cell cycle-related gene expression in the host brain is one of the molecular mechanisms of IV-MSC therapy for cerebral ischemia.

Acceleration of Wound Healing Using Adipose-derived Stem Cell Therapy with Platelet Concentrates: Plateletrich Plasma (PRP) vs. Platelet-rich Fibrin (PRF) (혈소판 농축재제를 이용한 창상치유의 촉진)

  • Hahn, Hyung-Min;Jeon, Yeo-Reum;Rha, Dong-Kyun;Lew, Dae-Hyun
    • Archives of Plastic Surgery
    • /
    • v.38 no.4
    • /
    • pp.345-350
    • /
    • 2011
  • Purpose: Although platelet-rich plasma (PRP) potentiate the wound healing activity of adipose-derived stem cells (ADSCs), its effect cannot be sustained for a prolonged period of time due to short duration of action. This led us to design and produce platelet-rich fibrin (PRF), in an effort to develop a tool which lasts longer, and apply it on wound healing. Methods: Two symmetrical skin defects were made on the back of seven nude mice. ADSCs were applied to each wound, combined with either PRP or PRF. The wound area was measured over 14 days. By day 16, the wound was harvested and histologic analysis was performed including counting of the blood vessel. Results: The healing rate was more accelerated in PRP group in the first 5 days (p<0.05). However, PRF group surpassed PRP group after 6 days (p<0.05). The average number of blood vessels observed in the PRF group was $6.53{\pm}0.51$, compared with $5.68{\pm}0.71$ for the PRP group. Conclusion: PRF exerts a slow yet pervasive influence over the two-week course of the wound healing process. Thus, PRF is probably more beneficial for promoting the activity of ADSCs for a sustained period of time.

Effects of total body irradiation-based conditioning on allogeneic stem cell transplantation for pediatric acute leukemia: a single-institution study

  • Park, Jongmoo;Choi, Eun Kyung;Kim, Jong Hoon;Lee, Sang-Wook;Song, Si Yeol;Yoon, Sang Min;Kim, Young Seok;Kim, Su Ssan;Park, Jin-Hong;Park, Jaehyeon;Ahn, Seung Do
    • Radiation Oncology Journal
    • /
    • v.32 no.3
    • /
    • pp.198-207
    • /
    • 2014
  • Purpose: To evaluate the effects of total body irradiation (TBI), as a conditioning regimen prior to allogeneic stem cell transplantation (allo-SCT), in pediatric acute leukemia patients. Materials and Methods: From January 2001 to December 2011, 28 patients, aged less than 18 years, were treated with TBI-based conditioning for allo-SCT in our institution. Of the 28 patients, 21 patients were diagnosed with acute lymphoblastic leukemia (ALL, 75%) and 7 were diagnosed with acute myeloid leukemia (AML, 25%). TBI was completed 4 days or 1 day before stem cell infusion. Patients underwent radiation therapy with bilateral parallel opposing fields and 6-MV X-rays. The Kaplan-Meier method was used to calculate survival outcomes. Results: The 2-year event-free survival and overall survival rates were 66% and 56%, respectively (71.4% and 60.0% in AML patients vs. 64.3% and 52.4% in ALL patients, respectively). Treatment related mortality rate were 25%. Acute and chronic graft-versus-host disease was a major complication; other complications included endocrine dysfunction and pulmonary complications. Common complications from TBI were nausea (89%) and cataracts (7.1%). Conclusion: The efficacy and toxicity data in this study of TBI-based conditioning to pediatric acute leukemia patients were comparable with previous studies. However, clinicians need to focus on the acute and chronic complications related to allo-SCT.

In vivo Tracking of Transplanted Bone Marrow-Derived Mesenchymal Stem Cells in a Murine Model of Stroke by Bioluminescence Imaging

  • Jang, Kyung-Sool;Lee, Kwan-Sung;Yang, Seung-Ho;Jeun, Sin-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.5
    • /
    • pp.391-398
    • /
    • 2010
  • Objective : This study was designed to validate the cell trafficking efficiency of the in vivo bioluminescence image (BLI) study in the setting of transplantation of the luciferase expressing bone marrow-derived mesenchymal stem cells (BMSC), which were delivered at each different time after transient middle cerebral artery occlusion (MCAO) in a mouse model. Methods : Transplanting donor BMSC were prepared by primary cell culture from transgenic mouse expressing luciferase (LUC). Transient focal infarcts were induced in 4-6-week-old male nude mice. The experiment mice were divided into five groups by the time of MSC transplantation : 1) sham-operation group, 2) 2-h group, 3) 1-day group, 4) 3-day group, and 5) 1-week group. BLI for detection of spatial distribution of transplanted MSC was performed by detecting emitted photons. Migration of the transplanted cells to the infarcted area was confirmed by histological examinations. Differences between groups were evaluated by paired t-test. Results : A focal spot of bioluminescence was observed at the injection site on the next day after transplantation by Signal intensity of bioluminescence. After 4 weeks, the mean signal intensities of 2-h, 1-day, 3-day, and 1-week group were $2.6{\times}10^7{\pm}7.4{\times}10^6$. $6.1{\times}10^6{\pm}1.2{\times}10^6$, $1.7{\times}10^6{\pm}4.4{\times}10^5$, and $8.9{\times}10^6{\pm}9.5{\times}10^5$, respectively. The 2-h group showed significantly higher signal intensity (p<0.01). The engrafted BMSC showed around the infarct border zones on immunohistochemical examination. The counts of LUC-positive cells revealed the highest number in the 2-h group, in agreement with the results of BLI experiments (p<0.01). Conclusion : In this study, the results suggested that the transplanted BMSC migrated to the infarct border zone in BLI study and the higher signal intensity of LUC-positive cells seen in 2 hrs after MSC transplantation in MCAO mouse model. In addition, noninvasive imaging in real time is an ideal method for tracking stem cell transplantation. This method can be widely applied to various research fields of cell transplantation therapy.

Analysis of Global Gene Expression Profile of Human Adipose Tissue Derived Mesenchymal Stem Cell Cultured with Cancer Cells (암세포주와 공동 배양된 인간 지방 조직 유래 중간엽 줄기 세포의 유전자 발현 분석)

  • Kim, Jong-Myung;Yu, Ji-Min;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.631-646
    • /
    • 2011
  • Mesenchymal stem cells (MSC) are multipotent and can be isolated from diverse human tissues including bone marrow, fat, placenta, dental pulp, synovium, tonsil, and the thymus. They function as regulators of tissue homeostasis. Because of their various advantages such as plasticity, easy isolation and manipulation, chemotaxis to cancer, and immune regulatory function, MSCs have been considered to be a potent cell source for regenerative medicine, cancer treatment and other cell based therapy such as GVHD. However, relating to its supportive feature for surrounding cell and tissue, it has been frequently reported that MSCs accelerate tumor growth by modulating cancer microenvironment through promoting angiogenesis, secreting growth factors, and suppressing anti-tumorigenic immune reaction. Thus, clinical application of MSCs has been limited. To understand the underlying mechanism which modulates MSCs to function as tumor supportive cells, we co-cultured human adipose tissue derived mesenchymal stem cells (ASC) with cancer cell lines H460 and U87MG. Then, expression data of ASCs co-cultured with cancer cells and cultured alone were obtained via microarray. Comparative expression analysis was carried out using DAVID (Database for Annotation, Visualization and Integrated Discovery) and PANTHER (Protein ANalysis THrough Evolutionary Relationships) in divers aspects including biological process, molecular function, cellular component, protein class, disease, tissue expression, and signal pathway. We found that cancer cells alter the expression profile of MSCs to cancer associated fibroblast like cells by modulating its energy metabolism, stemness, cell structure components, and paracrine effect in a variety of levels. These findings will improve the clinical efficacy and safety of MSCs based cell therapy.

Characterization of Umbilical Cord-derived Stem Cells during Expansion in Vitro (탯줄유래 줄기세포의 계대배양에 따른 특성 변화의 분석)

  • Park, Se-Ah;Kang, Hyun-Mi;Heo, Jin-Yeong;Yoon, Jin-Ah;Kim, Hae-Kwon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.1
    • /
    • pp.23-34
    • /
    • 2009
  • Objectives: Mesenchymal stem cells (MSC) comprise a promising tool for cellular therapy. It is known that long-term in vitro culture of human bone marrow and adipose tissue derived-MSCs lead to a reduction of life span and a change of stem-like characters. The aim of our study was to examine whether stem cell properties of human umbilical cord-derived stem cells (HUC) could be affected by in vitro expansion. Methods: HUC were isolated from human umbilical cord and cultured for 10 passages in vitro. Morphology and population doubling time (PDT) were investigated, and changes of stem cell properties were examined using RT-PCR and immunocytochemistry during serial subcultures. Results: Morphology and PDT of HUC began to change slightly from the 7th passage (p7). Expression level of nestin and vimentin mRNAs increased along with the culture period from p4 until p10. In contrast, expression level of SCF mRNA decreased during the same culture period. Expression level of Oct-4 and HNF-4${\alpha}$ mRNAs was not significantly changed throughout the culture period until p10. Expression level of BMP-4, FGF-5, NCAM and HLA-ABC mRNAs appeared to increase as the culture continued, however, the difference was not significant. Immunocytochemical studies showed that HUC at p3, p6 and p9 positively were stained with antibodies against SSEA-3 and SSEA-4 proteins. Interestingly, staining intensity of HUC for ICAM-1 and HLA-ABC gradually increased throughout the culture period. Intensity against thy-1 and fibronectin antibodies increased at p9 while that against TRA-1-60 and VCAM-1 antibodies began to decrease at p6 until p9. Conclusions: These results suggest that HUC change some of their stem cell characteristics during in vitro culture. Development of culture system might be needed for the maintenance of characteristics.

Bioactive Compounds for the Treatment of Renal Disease

  • Cho, Kang Su;Ko, In Kap;Yoo, James J.
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1015-1025
    • /
    • 2018
  • Kidney diseases including acute kidney injury and chronic kidney disease are among the largest health issues worldwide. Dialysis and kidney transplantation can replace a significant portion of renal function, however these treatments still have limitations. To overcome these shortcomings, a variety of innovative efforts have been introduced, including cell-based therapies. During the past decades, advances have been made in the stem cell and developmental biology, and tissue engineering. As part of such efforts, studies on renal cell therapy and artificial kidney developments have been conducted, and multiple therapeutic interventions have shown promise in the pre-clinical and clinical settings. More recently, therapeutic cell-secreting secretomes have emerged as a potential alternative to cell-based approaches. This approach involves the use of renotropic factors, such as growth factors and cytokines, that are produced by cells and these factors have shown effectiveness in facilitating kidney function recovery. This review focuses on the renotropic functions of bioactive compounds that provide protective and regenerative effects for kidney tissue repair, based on the available data in the literature.

Cell Versus Chemokine Therapy Effects on Cell Mobilization to Chronically Dysfunctional Urinary Sphincters of Nonhuman Primates

  • Williams, J. Koudy;Mariya, Silmi;Suparto, Irma;Lankford, Shannon S.;Andersson, Karl-Erik
    • International Neurourology Journal
    • /
    • v.22 no.4
    • /
    • pp.260-267
    • /
    • 2018
  • Purpose: A major question remaining in approaches to tissue engineering and organ replacement is the role of native mobilized native cells in the regeneration process of damaged tissues and organs. The goal of this study was to compare the cell mobilizing effects of the chemokine CXCL12 and cell therapy on the urinary sphincter of nonhuman primates (NHP) with chronic intrinsic urinary sphincter dysfunction. Methods: Either autologous lenti-M-cherry labeled skeletal muscle precursor cells (skMPCs) or CXCL12 were injected directly into the sphincter complex of female NHPs with or without surgery-induced chronic urinary sphincter dysfunction (n=4/treatment condition). All monkeys had partial bone marrow transplantation with autologous lenti-green fluorescent protein (GFP) bone marrow cells prior to treatment. Labeled cells were identified, characterized and quantified using computer-assisted immunohistochemistry 6 months posttreatment. Results: GFP-labeled bone marrow cells (BMCs) were identified in the bone marrow and both BMCs and skMPCs were found in the urinary sphincter at 6-month postinjection. BMCs and skMPCs were present in the striated muscle, smooth muscle, and lamina propria/urothelium of the sphincter tissue. Sphincter injury increased the sphincter content of BMCs when analyzed 6-month postinjection. CXCL12 treatment, but not skMPCs, increased the number of BMCs in all layers of the sphincter complex (P<0.05). CXCL12 only modestly (P=0.15) increased the number of skMPCs in the sphincter complex. Conclusions: This dual labeling methodology now provides us with the tools to measure the relative number of locally injected cells versus bone marrow transplanted cells. The results of this study suggest that CXCL12 promotes mobilization of cells to the sphincter, which may contribute more to sphincter regeneration than injected cells.