• Title/Summary/Keyword: stem cell therapy

Search Result 447, Processing Time 0.023 seconds

5-Aza-2'-deoxycytidine Inhibits the Maintenance of Cancer Stem Cell in a Mouse Model of Breast Cancer (마우스 유방암 모델에서 5-Aza-2'-deoxycytidine의 암줄기세포 유지 억제 효과)

  • Nho, Kyoung-Jin;Yang, In-Sook;Kim, Ran-Ju;Kim, Soo-Rim;Park, Jeong-Ran;Jung, Ji-Youn;Cho, Sung-Dae;Nam, Jeong-Seok
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1164-1169
    • /
    • 2009
  • Aberrant DNA methylation plays an important role in the development of cancer. It has been reported recently that DNA hypermethylation is involved in the maintenance of cancer stem cells. The present study was designed to test the hypothesis that the demethylating agent, 5-aza-2'-deoxycytidine (AZA), can inhibit the potential for maintenance of cancer stem cells. To validate this hypothesis, we used 4T1 syngeneic mouse models of breast cancer. The AZA pre-treated 4T1 cells showed a dramatic inhibition of tumorsphere formation, compared to their counterparts in vitro. In addition, the AZA treatment significantly suppressed the expression of stem regulator genes, such as oct-4, nanog and sox2, compared to counterparts in vivo. Therefore, selective inhibition of DNA methylation may be useful for stem-specific cancer therapy.

Diagnosis and Management of Patients with Mucopolysaccharidoses in Malaysia

  • Ngu, Lock-Hock
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.4 no.1
    • /
    • pp.11-13
    • /
    • 2018
  • In Malaysia, diagnosis and treatment of patients with mucopolysaccharidoses (MPS) is mainly localized at Hospital Kuala Lumpur, which is the national referral center for rare diseases. To date there are 83 patients diagnosed with MPS in our center, with MPS II being the commonest. The Malaysian National Medicines Policy second edition has a specific section on the orphan drugs which includes recombinant human enzyme for enzyme replacement therapy (ERT) in MPS. So far, National Pharmaceutical Regulatory Agency Malaysia has approved recombinant human enzyme for MPS types I (Loranidase), II (idursulfase), IVA (elosulfase alfa), and VI (Galsufase). Access to Idursulfase beta (another recombinant human enzyme for MPS II) and vestronidase alfa-vjbk (MPS VII) required special authorization on named patient basic. Currently there are 25 patients receiving ERT, 70% of the funding are from Ministry of Health (MOH), the remaining 30% are from various charitable funds and humanitarian programs. Thirteen newly diagnosed patients have to queue for an additional fund. Four patients have been treated with Hematopoietic stem cell transplant. MOH has also published guidelines regarding the patient selection criteria for ERT and treatment monitoring schedule.

The Latest Trends of Treatment for Alopecia (탈모 치료에 관한 최신 동향)

  • Jang, In-Wook;Ko, Woo-Shin;Yoon, Hwa-Jung
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.28 no.4
    • /
    • pp.12-28
    • /
    • 2015
  • Objective : The purpose of this study is to analyse research trend on alopecia including androgenetic alopecia, alopecia areata, etc.Methods : We searched Pubmed, CNKI and OASIS on the title "alopecia" in recent 5 years.Results : We found 23 studies on Pubmed, 20 on CNKI, and 3 on OASIS about treatments of alopecia. The subjects of them were about 5α-reductase inhibitor, Minoxidil, steroids, immunosuppression, laser therapy, PRP, microneedling, stem cell, herbal medicine, integrative medicine, external treatments and syndrome differentiation.Conclusions : In recent studies in western medicine were about combination therapy or safety and presented validities and superiorities about new treatments. Integrative medicine, external treatment and researches about patients' characteristics were reported in TCM. Korean medicine has advantages of considering whole body and phychological problems.

Highlighted STAT3 as a potential drug target for cancer therapy

  • Lee, Haeri;Jeong, Ae Jin;Ye, Sang-Kyu
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.415-423
    • /
    • 2019
  • Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that regulates cell proliferation, differentiation, apoptosis, angiogenesis, inflammation and immune responses. Aberrant STAT3 activation triggers tumor progression through oncogenic gene expression in numerous human cancers, leading to promote tumor malignancy. On the contrary, STAT3 activation in immune cells cause elevation of immunosuppressive factors. Accumulating evidence suggests that the tumor microenvironment closely interacts with the STAT3 signaling pathway. So, targeting STAT3 may improve tumor progression, and anti-cancer immune response. In this review, we summarized the role of STAT3 in cancer and the tumor microenvironment, and present inhibitors of STAT3 signaling cascades.

A Review of Recent Research in Treatment Approaches of Mucopolysaccharidosis (MPS)

  • Yang, Aram;Kim, Jinsup;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.3 no.2
    • /
    • pp.37-40
    • /
    • 2017
  • Mucopolysaccharidosis (MPS) is caused by accumulation of the glycosaminoglycans in all tissues due to decreased activity of the lysosomal enzyme. Patients exhibit multisystemic signs and symptoms in a chronic and progressive manner, especially with changes in the skeleton, cardiopulmonary system, central nervous system, cornea, skin, liver, and spleen. In the past, treatment of MPS was limited to enzyme replacement therapy (ERT). The outcome for affected patients improved with the introduction of new technologies as hematopoietic stem cell transplantation, relegated to specific situations after ERT became available. Intrathecal ERT may be considered in situations of high neurosurgical risk but still it is experimental in humans. New insights on the pathophysiology of MPS disorders are leading to alternative therapeutic approaches, as gene therapy, inflammatory response modulators and substrate reduction therapy. In this paper, we will highlight the recent novel treatment and clinical trials for MPS and discuss with the goal of fostering an understanding of this field.

Prospective validation of a novel dosing scheme for intravenous busulfan in adult patients undergoing hematopoietic stem cell transplantation

  • Cho, Sang-Heon;Lee, Jung-Hee;Lim, Hyeong-Seok;Lee, Kyoo-Hyung;Kim, Dae-Young;Choe, Sangmin;Bae, Kyun-Seop;Lee, Je-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.245-251
    • /
    • 2016
  • The objective of this study was to externally validate a new dosing scheme for busulfan. Thirty-seven adult patients who received busulfan as conditioning therapy for hematopoietic stem cell transplantation (HCT) participated in this prospective study. Patients were randomized to receive intravenous busulfan, either as the conventional dosage (3.2 mg/kg daily) or according to the new dosing scheme based on their actual body weight (ABW) ($23{\times}ABW^{0.5}mg\;daily$) targeting an area under the concentration-time curve (AUC) of $5924{\mu}M{\cdot}min$. Pharmacokinetic profiles were collected using a limited sampling strategy by randomly selecting 2 time points at 3.5, 5, 6, 7 or 22 hours after starting busulfan administration. Using an established population pharmacokinetic model with NONMEM software, busulfan concentrations at the available blood sampling times were predicted from dosage history and demographic data. The predicted and measured concentrations were compared by a visual predictive check (VPC). Maximum a posteriori Bayesian estimators were estimated to calculate the predicted AUC ($AUC_{PRED}$). The accuracy and precision of the $AUC_{PRED}$ values were assessed by calculating the mean prediction error (MPE) and root mean squared prediction error (RMSE), and compared with the target AUC of $5924{\mu}M{\cdot}min$. VPC showed that most data fell within the 95% prediction interval. MPE and RMSE of $AUC_{PRED}$ were -5.8% and 20.6%, respectively, in the conventional dosing group and -2.1% and 14.0%, respectively, in the new dosing scheme group. These findings demonstrated the validity of a new dosing scheme for daily intravenous busulfan used as conditioning therapy for HCT.

Improvement of Neuronal Differentiation by PDE4 Inhibition in Human Bone Marrow-mesenchymal Stem Cells (인간 골수유래-중간엽 줄기세포(hBM-MSCs)에서 PDE4 억제조절을 통한 신경세포 분화 효율 개선)

  • Jeong, Da Hee;Joe, I-Seul;Cho, Goang-Won
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1355-1359
    • /
    • 2016
  • Human bone marrow mesenchymal stem cells (hBM-MSCs) can differentiate into various cell types including osteoblasts, adipocytes, chondrocytes, and myocytes. Previous studies, including our own, have shown that MSCs can also differentiate into neuron-like cells. However, their rate of neuronal differentiation is not sufficient for application to stem cell therapy, which requires well-defined cell types. For this purpose, we first examined the expression of neuronal lineage markers (GFAP, MAP-2, KCNH1, Nestin, NF-M, and Tuj-1) by real-time PCR, western blot, and immunocytochemical staining. The expressions of the astrocyte marker GFAP and neuronal markers NF-M and Tuj-1 increased in neuronal differentiated MSCs (dMSCs). To improve the neuronal differentiation efficiency, PDE4, an important signaling intermediator in the progression of neuronal differentiation, was modulated using well-known inhibitors such as rolipram or resveratrol and then differentiated into neuronal cells (Roli- or RSV-dMSCs). The expressions of NF-M, Tuj-1 were increased while that of GFAP decreased in Roli- and RSV-dMSCs, which were examined by real-time PCR, western blot, and immunocytochemical staining. From these experiments, we have found that the neuronal differentiation efficiency can be ameliorated by the modulation of PDE4 activity.

Promising Therapeutic Effects of Embryonic Stem Cells-Origin Mesenchymal Stem Cells in Experimental Pulmonary Fibrosis Models: Immunomodulatory and Anti-Apoptotic Mechanisms

  • Hanna Lee;Ok-Yi Jeong;Hee Jin Park;Sung-Lim Lee;Eun-yeong Bok;Mingyo Kim;Young Sun Suh;Yun-Hong Cheon;Hyun-Ok Kim;Suhee Kim;Sung Hak Chun;Jung Min Park;Young Jin Lee;Sang-Il Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.45.1-45.22
    • /
    • 2023
  • Interstitial lung disease (ILD) involves persistent inflammation and fibrosis, leading to respiratory failure and even death. Adult tissue-derived mesenchymal stem cells (MSCs) show potential in ILD therapeutics but obtaining an adequate quantity of cells for drug application is difficult. Daewoong Pharmaceutical's MSCs (DW-MSCs) derived from embryonic stem cells sustain a high proliferative capacity following long-term culture and expansion. The aim of this study was to investigate the therapeutic potential of DW-MSCs in experimental mouse models of ILD. DW-MSCs were expanded up to 12 passages for in vivo application in bleomycin-induced pulmonary fibrosis and collagen-induced connective tissue disease-ILD mouse models. We assessed lung inflammation and fibrosis, lung tissue immune cells, fibrosis-related gene/protein expression, apoptosis and mitochondrial function of alveolar epithelial cells, and mitochondrial transfer ability. Intravenous administration of DWMSCs consistently improved lung fibrosis and reduced inflammatory and fibrotic markers expression in both models across various disease stages. The therapeutic effect of DW-MSCs was comparable to that following daily oral administration of nintedanib or pirfenidone. Mechanistically, DW-MSCs exhibited immunomodulatory effects by reducing the number of B cells during the early phase and increasing the ratio of Tregs to Th17 cells during the late phase of bleomycin-induced pulmonary fibrosis. Furthermore, DW-MSCs exhibited anti-apoptotic effects, increased cell viability, and improved mitochondrial respiration in alveolar epithelial cells by transferring their mitochondria to alveolar epithelial cells. Our findings indicate the strong potential of DW-MSCs in the treatment of ILD owing to their high efficacy and immunomodulatory and anti-apoptotic effects.

Parathyroid Hormone-Related Protein Promotes the Proliferation of Patient-Derived Glioblastoma Stem Cells via Activating cAMP/PKA Signaling Pathway

  • Zhenyu Guo;Tingqin Huang;Yingfei Liu;Chongxiao Liu
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.315-325
    • /
    • 2023
  • Background and Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor characterized by its heterogeneity and high recurrence and lethality rates. Glioblastoma stem cells (GSCs) play a crucial role in therapy resistance and tumor recurrence. Therefore, targeting GSCs is a key objective in developing effective treatments for GBM. The role of Parathyroid hormone-related peptide (PTHrP) in GBM and its impact on GSCs remains unclear. This study aimed to investigate the effect of PTHrP on GSCs and its potential as a therapeutic target for GBM. Methods and Results: Using the Cancer Genome Atlas (TCGA) database, we found higher expression of PTHrP in GBM, which correlated inversely with survival. GSCs were established from three human GBM samples obtained after surgical resection. Exposure to recombinant human PTHrP protein (rPTHrP) at different concentrations significantly enhanced GSCs viability. Knockdown of PTHrP using target-specific siRNA (siPTHrP) inhibited tumorsphere formation and reduced the number of BrdU-positive cells. In an orthotopic xenograft mouse model, suppression of PTHrP expression led to significant inhibition of tumor growth. The addition of rPTHrP in the growth medium counteracted the antiproliferative effect of siPTHrP. Further investigation revealed that PTHrP increased cAMP concentration and activated the PKA signaling pathway. Treatment with forskolin, an adenylyl cyclase activator, nullified the antiproliferative effect of siPTHrP. Conclusions: Our findings demonstrate that PTHrP promotes the proliferation of patient-derived GSCs by activating the cAMP/PKA signaling pathway. These results uncover a novel role for PTHrP and suggest its potential as a therapeutic target for GBM treatment.

Diagnostic and therapeutic advances in adults with acute lymphoblastic leukemia in the era of gene analysis and targeted immunotherapy

  • Jae-Ho Yoon;Seok Lee
    • The Korean journal of internal medicine
    • /
    • v.39 no.1
    • /
    • pp.34-56
    • /
    • 2024
  • Acute lymphoblastic leukemia (ALL) is one of the most rapidly changing hematological malignancies with advanced understanding of the genetic landscape, detection methods of minimal residual disease (MRD), and the development of immunotherapeutic agents with good clinical outcomes. The annual incidence of adult ALL in Korea is 300-350 patients per year. The WHO classification of ALL was revised in 2022 to reflect the molecular cytogenetic features and suggest new adverse-risk subgroups, such as Ph-like ALL and ETP-ALL. We continue to use traditional adverse-risk features and cytogenetics, with MRD-directed post-remission therapy including allogeneic hematopoietic cell transplantation. However, with the introduction of novel agents, such as ponatinib, blinatumomab, and inotuzumab ozogamicin incorporated into frontline therapy, good MRD responses have been achieved, and overall survival outcomes are improving. Accordingly, some clinical trials have suggested a possible era of chemotherapy-free or transplantation-free approaches in the near future. Nevertheless, relapse of refractory ALL still occurs, and some poor ALL subtypes, such as Ph-like ALL and ETP-ALL, are unsolved problems for which novel agents and treatment strategies are needed. In this review, we summarize the currently applied diagnostic and therapeutic practices in the era of advanced genetic analysis and targeted immunotherapies in United States and Europe and introduce real-world Korean data.