• Title/Summary/Keyword: stellar kinematics

Search Result 68, Processing Time 0.025 seconds

SAMI Galaxy Survey Data Release 2: Absorption-line Physics

  • Oh, Sree;Scott, Nicholas;van de Sande, Jesse
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.53.1-53.1
    • /
    • 2018
  • We present the second data release from the SAMI Galaxy Survey. The data release contains reduced spectral cubes for 1559 galaxies, about 50% of the full survey, having a redshift range 0.004 < z < 0.113 and a large stellar mass range 7.5 < log($M_*/M_{\odot}$) < 11.6. This release also includes stellar kinematic and stellar population value-added products derived from absorption line measurements, and all emission line value-added products from Data Release One. The data are provided online through Australian Astronomical Optics' Data Central. Our poster presents stellar/gas kinematics on the metallicity-mass plane and highlight several galaxies from the SAMI Galaxy Survey that have interesting stellar and gas kinematics. For more information about data release 2, please see: https://sami-survey.org/abdr.

  • PDF

SPATIALLY RESOLVED KINEMATICS OF GAS AND STARS IN HIDDEN TYPE 1 AGNS

  • Son, Donghoon;Woo, Jong-Hak;Eun, Da-In;Cho, Hojin;Karouzos, Marios;Park, Songyeon
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.5
    • /
    • pp.103-115
    • /
    • 2020
  • We analyze the spatially resolved kinematics of gas and stars for a sample of ten hidden type 1 AGNs in order to investigate the nature of their central sources and the scaling relation with host galaxy stellar velocity dispersion. We select our sample from a large number of hidden type 1 AGNs, which are identified based on the presence of a broad (full width at half maximum ≳1000 km s-1) component in the Hα line profile and which are frequently mis-classified as type 2 AGNs because AGN continuum and broad emission lines are weak or obscured in the optical spectral range. We used the Blue Channel Spectrograph at the 6.5-m Multiple Mirror Telescope to obtain long-slit data with a spatial scale of 0.3 arcsec pixel-1. We detected broad Hβ lines for only two targets; however, the presence of strong broad Hα lines indicates that the AGNs we selected are all low-luminosity type 1 AGNs. We measured the velocity, velocity dispersion, and flux of stellar continuum and gas emission lines (i.e., Hβ and [O III]) as a function of distance from the center. The spatially resolved gas kinematics traced by Hβ or [O III] are generally similar to the stellar kinematics except for the inner center, where signatures of gas outflows are detected. We compare the luminosity-weighted effective stellar velocity dispersions with the black hole masses and find that our hidden type 1 AGNs, which have relatively low back hole masses, follow the same scaling relation as reverberation-mapped type 1 AGN and more massive inactive galaxies.

Internal structure and kinematics of the massive star forming region W4

  • Lim, Beomdu;Yun, Hyeong-Sik;Rauw, Gregor;Naze, Yael;Kim, Jinyoung S.;Lee, Jeong-Eun;Hwang, Narae;Park, Byeong-Gon;Park, Sunkyung;Sung, Hwankyung;Kim, Seulgi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.72.3-72.3
    • /
    • 2019
  • OB associations are young stellar systems on a few tens to a hundred parsec scale, and many of them are composed of multiple substructures. It is suggested that some hints about their formation process are probably imprinted on structural features and internal kinematics. In this context, we study the massive star forming region W4 in the Cassiopeia OB6 association using the Gaia proper motion data and high-resolution optical spectra taken from Hectochelle on MMT. We probe the structure and internal kinematics of W4 to trance its formation process. Several nonmembers with different kinematic properties are excluded in our sample. Some of them may be young stellar population spread over a large area of the Perseus spiral arm given their wide spatial distribution over 50 parsecs. W4 is composed of an central open cluster (IC 1805) and an extended stellar component. Their global expansion patterns are detected in stellar proper motion. In this presentation, we will further discuss the formation process of W4, based on the velocity dispersions of stars comprising these substructure.

  • PDF

Revealing ionized gas kinematics at the center of nearby Seyfert galaxies

  • Kim, Eun Chong;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.43.2-43.2
    • /
    • 2014
  • We investigate the ionized gas kinematics at the center of 6 nearby Seyfert galaxies, using the integral field spectroscopy data from the Calar Alto Legacy Integral Field spectroscopy Area survey Data Release 1. To understand the kinematic nature of the ionized gas in the narrow-line regions (NLRs), we measured the flux, velocity, and velocity dispersion of the [OIII] $5007{\AA}$ and Ha $6563{\AA}$ emission lines, after subtracting a best-fit stellar population model representing the stellar features. At the same time, we measured stellar velocity as a reference for the systemic velocity, and stellar velocity dispersion. We spatially resolved the velocity structure of the ionized gas using each emission line and compared it to that of stars. In this poster we present the flux, velocity, and velocity dispersion maps of the ionized gas and stars, and discuss the nature of the ionized gas outflows in the central kiloparsec scale.

  • PDF

EVOLUTIONARY MODELS OF ROTATING DENSE STELLAR SYSTEMS WITH EMBEDDED BLACK HOLES

  • FIESTAS, JOSE A.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.345-347
    • /
    • 2015
  • We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of an initial axi-symmetry due to rotation. Central black hole seeds are included in our models, and black hole growth due to the consumption of stellar matter is simulated until the central potential dominates the kinematics of the core. Our goal is to study the long-term evolution (Gyr) of relaxed dense stellar systems which deviate from spherical symmetry, and their morphology and final kinematics. With this purpose in mind, we developed a 2D Fokker-Planck analytical code, and confirmed its results using detailed N-Body simulations, applying a high performance code developed for GPU machines. We conclude that the initial rotation significantly modifies the shape and lifetime of these systems, and cannot be neglected in the study of the evolution of globular clusters, and the galaxy itself. Our models give a constraint for the final intermediate black hole masses expected to be present in globular clusters.

Gas and Stellar Kinematics of 9 Pseudo Bulge Galaxies

  • Jo, Kooksup;Woo, Jong-Hak;Matsuoka, Kenta;Cho, Hojin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.78.4-79
    • /
    • 2015
  • We present the spatially resolved kinematics of ionized gas and stars along the major axis of 9 pseudo bulge galaxies. Using the high quality long-slit spectra obtained with the FOCAS at the Subaru telescope, we measured the flux, velocity, and velocity dispersion of the [OIII] and $H{\beta}$ lines to determine the size of the narrow-line region, rotation curve, and the radial profile of velocity dispersions. We compare ionized gas kinematics and stellar kinematics to investigate whether ionized gas shows any signs of outflows and whether stars and ionized gas show the same sigma-dip feature (i.e., decrease of velocity dispersion) at the very center.

  • PDF

Gas and Stellar Kinematics of 9 Pseudo Bulge Galaxies

  • Jo, Kooksup;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.69.1-69.1
    • /
    • 2014
  • We present the spatially resolved kinematics of ionized gas and stars along the major axis of 9 pseudo bulge galaxies. Using the high quality long-slit spectra obtained with the FOCAS at the Subaru telescope, we measured the flux, velocity, and velocity dispersion of the [OIII] and $H{\beta}$ lines to determine the size of the narrow-line region, rotation curve, and the radial profile of velocity dispersions. We compare ionized gas kinematics and stellar kinematics to investigate whether ionized gas shows any signs of outflows and whether stars and ionized gas show the same sigma-dip feature (i.e., decrease of velocity dispersion) at the very center.

  • PDF

Systemic search for gas outflows in AGNs and star-forming galaxies

  • Woo, Jong-Hak;Son, Donghoon;Bae, Hyun-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.35.2-35.2
    • /
    • 2016
  • We present a census of AGN-driven gas outflows based on the kinematics of ionized gas and stars, using a large sample of ~11,000 emission line galaxies at z < 0.3, selected from SDSS. First, a broad correlation between gas and stellar velocity dispersions indicates that the bulge gravitational potential plays a main role in determining the ionized gas kinematics. However, the velocity dispersion of the [OIII] emission line is larger than stellar velocity dispersion by a factor of 1.3-1.4, suggesting that the non-gravitational (non-virial) component, i.e., outflows, is almost comparable to the gravitational component. Second, gas-to-stellar velocity dispersion ratio increases with both AGN luminosity and Eddington ratio, suggesting that non-gravitational kinematics are clearly linked to AGN accretion. The distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the launching velocity of gas outflows increases with AGN luminosity. Third, the fraction of AGNs with a signature of the non-gravitational kinematics, steeply increases with AGN luminosity and Eddington ratio, while the majority of luminous AGNs presents the non-gravitational kinematics in the [OIII] profile. These results suggest that ionized gas outflows are prevalent among type 2 AGNs. On the other hand, we find no strong trend of the [OIII] kinematics with radio luminosity, once we remove the effect of the bulge gravitational potential, indicating that ionized gas outflows are not directly related to radio activity for the majority of type 2 AGNs. We will discuss the implication of these results for AGN feedback in the local universe.

  • PDF

Life of the Milky Way Galaxy

  • An, Deok-Keun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2012
  • I will report recent progress in understanding properties of stellar and interstellar components of the Milky Way Galaxy on the two extremes - ongoing star formation activities in the Galactic center and stellar relics in the halo. Properties of the interstellar medium in the Galactic center and their relationship with star formation activities will be discussed based on by far the largest mid-IR spectroscopic data set in this region. Correlations between stellar kinematics and metallicities in the halo will be presented, along with a discussion on the estimation of fundamental stellar parameters from a set of empirically calibrated isochrones.

  • PDF

Defining the $M_{BH}-sigma_*$ relation using the uniformly measured stellar velocity dispersions in the near-IR

  • Kang, Wol-Rang;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • The correlation between black hole mass and stellar velocity dispersion provides an important clue on the black hole growth and galaxy evolution. In the case of AGN, however, it is extremely difficult to measure stellar velocity dispersions in the optical since AGN continuum dilutes stellar absorption features. In contrast, stellar velocity dispersions of active galaxies can be measured in the near-IR, where AGN-to-star flux ratio is much smaller. Expecting that more stellar velocity dispersion measurements will be available using future near-IR facilities, it is crucial to test whether the stellar velocity dispersions measured from the near-IR spectra are consistent with those measured from the optical spectra. For a sample of 35 nearby galaxies, for which optical stellar velocity dispersion measurements and dynamical black hole masses are available, we obtained high quality H-band spectra, using the TripleSpec at the Palomar 5-m Telescope, in order to calibrate the stellar velocity dispersions and define the $M_{BH}-sigma_*$ relation in the near-IR. Based on the spatially resolved kinematics, we correct for the rotation component and determine the luminosity-weighted stellar velocity dispersion of the spheroid component in each galaxy. In this presentation, we will show the comparison between optical and near-IR stellar velocity dispersion measurements and define the $M_{BH}-sigma_*$ relation based on uniformly measured stellar velocity dispersion in the near-IR.

  • PDF