• 제목/요약/키워드: steering angle

검색결과 435건 처리시간 0.024초

조종안정성평가 시험을 위한 조향 및 운전자모델 (Steering and Driver Model to Evaluate the Handling and Stability Characteristics)

  • 탁태오;최재민
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.241-248
    • /
    • 1998
  • In this study, a modeling method of power-assisted steering systems and driver models for vehicle dynamic analysis using AUTODYN7 is presented. Pressure-flow relations of flow control valve are derived, and the equations of motion of a steering gear are obtained. Combining pressure-flow relations and equations of motion, the steering force can be represented as a function of steering wheel angle or torque. Driver model was modeled based on a PID controller and forward target method. With the steering systems and driver model, various driving tests are conducted using AUTODYN7.

  • PDF

운전자 충돌에 의한 에너지 흡수식 스티어링 시스템의 동적 해석 (Dynamic Analysis of Energy Absorbing Steering System for Driver Impacts)

  • 허신;구정서;최진민
    • 연구논문집
    • /
    • 통권24호
    • /
    • pp.97-106
    • /
    • 1994
  • Steering system is typically one of the vehicle parts that may injure an unrestrained driver in a frontal collision. Therefore, the engineers of vehicle safety parts researched the allowable injury criteria such as HIC(head injury criterion). chest acceleration and knee impact force. From their research, they recognized that development of energy absorbing steering system was necessary to protect the driver. Energy absorbing parts of steering system consist of shear capsule, ball sleeve and shaft assembly. We performed the modelling and dynamic analysis of the energy absorbing steering column with the unrestrained driver model. The conclusions of this study are as follows. 1) The variation of column angle has an important effects on the dynamic responses of steering system and driver behavior. 2) The energy absorbing steering system satisfies the safety criterion of FMVSS 203, 208, but not the safety criterion of FMVSS 204.

  • PDF

Estiamation of Vehicle Sideslip Angle for Four-Wheel Steering Passenger Cars

  • Kim, Hwan-Seoung;You, Sam-Sang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.71-76
    • /
    • 2001
  • This paper deals with an estimation method for sideslip angle by using an unknown disturbance observation technique in 4WS passenger car systems. Firstly, a 4WS vehicle model with 3DOF is derived under the constant velocity and same tyres properties. The vehicle dynamics is transformed into the linear state space model with considering the external disturbances. Secondly, and unknown disturbance observer is introduced and its property which estimating the states of system without any disturbance information is shown. Lastly, the estimated sideslip angle of the 4WS vehicle system is verified through numerical simulation.

  • PDF

Estimation of Vehicle Sideslip Angle for Four-wheel Steering Passenger Cars

  • Kim, Hwan-Seong;You, Sam-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.476-476
    • /
    • 2000
  • This paper deals with an estimation method far sideslip angle by using an unknown input observation technique in 4WS passenger car systems. Firstly, a 4WS vehicle model with 3DOP is derived under the constant velocity and same tyre's properties. The induced model is transformed into the linear state space model with considering the external disturbance. Secondly, an unknown input observer is introduced and its property which estimating the states of system without any disturbance information is shown. Lastly, the estimated sideslip angle of the 4WS system is verified through numerical simulation.

  • PDF

Steering Characteristics of an Autonomous Tractor with Variable Distances to the Waypoint

  • Kim, Sang Cheol;Hong, Yeong Gi;Kim, Kook Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권2호
    • /
    • pp.123-130
    • /
    • 2013
  • Autonomous agricultural machines that are operated in small-scale farmland frequently experience turning and changes in direction. Thus, unlike when they are operated in large-scale farmland, the steering control systems need to be controlled precisely so that travel errors can be minimized. This study aims to develop a control algorithm for improving the path tracking performance of a steering system by analyzing the effect of the setting of the waypoint, which serves as the reference point for steering when an autonomous agricultural machine moves along a path or a coordinate, on control errors. A simulation was performed by modeling a 26-hp tractor steering system and by applying the equations of motion of a tractor, with the use of a computer. Path tracking errors could be reduced using an algorithm which sets the waypoint for steering on a travel path depending on the radius of curvature of the path and which then controls the speed and steering angle of the vehicle, rather than by changing the steering speed or steering ratio which are dependent on mechanical performance.

조향각-회전각 룩업테이블을 이용한 대칭형 각도센서 보상기를 가지는 안전한 적응형 전조등 제어기의 설계 (Safe Adaptive Headlight Controller with Symmetric Angle Sensor Compensator Using Steering-swivel Angle Lookup Table)

  • 윤지애;안중현;인멍디;조정훈;박대진
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.112-121
    • /
    • 2016
  • AFLS (Adaptive front lighting system) is being applied to improve safety in driving automotive at night. Safe embedded system design for controlling head-lamps is required to improve noise robust ECU hardware and software simultaneously by considering safety requirement of hardware-dependent software under severe environmental noise. In this paper, we propose an adaptive headlight controller with a newly-designed symmetric angle sensor compensator, especially based on the proposed steering-swivel angle lookup table to determine whether the current controlling target is safe. The proposed system includes an additional backup hardware to compare the system status and provides safe swivel-angle management using a controlling algorithm based on the pre-defined lookup table (LUT), which is a symmetric mapping relationship between the requested steering angle and expected swivel angle target. The implemented system model shows that the proposed architecture effectively detects abnormal situations and restores safe status of controlling the light-angle in AFLS operations under severe noisy environment.

운전자-자동차모델을 이용한 4륜조향자동차의 주행특성 해석 (Dynamic Characteristics Analysis of a Four-Wheel Steering Vehicle Using a Driver-Vehicle Model)

  • 이영화;김석일;서명원;김대영;김동룡
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.119-128
    • /
    • 1995
  • A driver-vehicle model means the integrated dynamic model that is able to estimate the steering wheel angle from the driver's desired path based on the dynamic characteristics of the driver and vehicle. In this paper, the dynamic characteristics of several four-wheel steering systems with the simultaneously steerable front and rear wheels are investigated and compared by means of the driver-vehicle model. Especially, the presented analysis results are obtained by using the ISO test codes such as lane change, double lane change and slalom, and the effects of the driver's steering response time and vehicle speed are examined on the responsiveness and stability of vehicle.

  • PDF

선박의 자동조타제어 (Auto steering control of ship)

  • 강창남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.209-211
    • /
    • 2006
  • Auto Steering System is the device for course keeping or course altering to ship's steering system. The purpose of automatic steering system is to keep the ship's course stable with the minimum course and rudder angle. Recently, modern control theories are being used widely in analyzing and designing the ship system. Though P.D type auto pilots are widely used in ships, the stability and the adjusting methods are not clarified. In this paper the authors proposed auto steering system with Hybrid Controller. The things that the actual operators of a steering wheel has acquired through their experience can be logically described by the Lingustic Control Rule. The characteristic of the control system were investigated through the computer simulation results. it was found that the Hybrid control was more efficient than the PD control system.

  • PDF

스티어링 컬럼의 충격 흡수 거동에 관한 연구 (The Study on the Impact Absorbing Behaviour of Steering Column)

  • 허신;구정서;최진민
    • 연구논문집
    • /
    • 통권25호
    • /
    • pp.23-29
    • /
    • 1995
  • Steering column is a typical component that may injure the driver at a frontal collision accident. To protect the driver from an impact, it is very important to study the impact absorbing behaviour of steering column. The dynamic simulation were performed for the ball sleeve type impact absorbing steering column. The simulation results show similar trends to FMVSS 203 test results. Hence using the simulation program developed in this study, it is possible to predict dynamic response of steering system which is used in design modification. Impact absorbing performance of the ball sleeve type steering column with the column angle of $21^\circC$ and $26^\circC$ satisfies the safety criterion of FMVSS 203.

  • PDF

MATLAB/Simulink를 이용한 컬럼형 전동조향장치(EPS)의 토크제어 시뮬레이션 (Torque Control Simulation of the Column Type EPS System using MATLAB/Simulink)

  • 방두열;이성철;장봉춘
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.277-278
    • /
    • 2006
  • As a development of technology, electric power steering system which uses an electric motor came to use in recent and it can solve the problems with hydraulic power steering system. In this paper, vehicle model and electric power steering system are combined to fulfill full vehicle model. By simulation effect of motor torque assist through electric power steering revealed effective, and full vehicle model are proved reasonable through comparison with real car experimental datum.

  • PDF