• Title/Summary/Keyword: steering angle

Search Result 435, Processing Time 0.021 seconds

Optimization of Process Variables of Shape Drawing for Steering Spline Shaft (조향장치용 스플라인 샤프트 이형인발 공정변수 최적화)

  • Lee, S.K.;Kim, S.M.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • In the multi-pass shape drawing process, the appropriate process design is very important to produce sound products. The reduction ratio, die angle, and the intermediate die shape are very important process variable of the multi-pass shape drawing. The aim of this study is the determination of the reduction ratio, die angle, and the intermediate die shape of the 2 pass shape drawing process for producing steering spline shaft. In this study, FE analysis, Taguchi method, and ANN(artificial neural network) were applied to determine the appropriate reduction ratio, die angle, and intermediate die shape. After the determination of the process variables, FE analysis and drawing experiment were performed to evaluate the effectiveness of the determined process variables. The dimensional accuracy of the final drawn spline shaft was evaluated by using 3D surface profiler and 3D laser digitizing system.

Tandem Light Deflector Operated by Electrowetting (전기습윤으로 구동하는 이중 광원 조향장치)

  • Song, Hyeonseok;Won, Jung Min;Chung, Sang Kug
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.38-43
    • /
    • 2020
  • This paper presents a new type of electrowetting driven tandem light deflector for high performance optical application. To steer an incident light, the proposed light deflector deforms the fluid interface using electrowetting actuation. The performance of the light deflector was experimentally verified by using a prototype of the proposed light deflector. Single and tandem light deflectors were separately prepared using microfabrication processes. The optical tests of the deflectors were conducted using a laser light. The proposed tandem light deflector obtained a 45° beam steering angle with a 5.3° deflection angle while a single light deflector was required for a 10.9° deflection angle to obtain the same beam steering angle. The proposed tandem light deflector with high optical capability can be applied to various optical applications from camera modules in mobile smart devices to advanced future optical systems.

PATH CONTROL FOR NONLINEAR VEHICLE MODELS (비선형 차량모델 모의 실험의 경로제어)

  • J.N. Lee
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.383-387
    • /
    • 1996
  • This paper presents a steering control strategy applicable to vehicle path following problems. This control strategy is based on realistic nonlinear equations of motion of multibody systems described in terms of relative joint coordinates. The acceleration of the steering angle is selected as a control input of the system. This input is obtained by considering position and slope errors at current and at advance times. This steering control strategy is tested in circular and lane change maneuvers with a nonlinear vehicle model.

  • PDF

Modeling & Dynamic Analysis for Four Wheel Steering Vehicles (4WS 차량의 모델링 및 동적 해석)

  • Jang, J.H.;Jeong, W.S.;Han, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

A Control Method of Driving a Paddy Vehicle Straight Ahead for Automatic Operation

  • Nagasaka, Yoshisada;Shigeta, Kazuto;Sato, Junichi
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1055-1062
    • /
    • 1996
  • A method for automatically driving paddy vehicles, such as rice transplanters, etc., straight ahead in a paddy field was investigated . The direction of such vehicles must be precisely controlled to do the operations as straight. However, the alignment of the from wheels becomes distorted due to the unevenness of the ground, preventing the vehicle form going straight. If the proper alignment of the front wheels is maintained , the vehicle can be driven straight ahead greater precision. To investigate the influence of the ground uneveness, the behavior of a paddy vehicle running over an obstacle was quantified. The left wheel ran over an obstacle on a flat concrete road surfaced. When the steering wheel was free, the front wheels were forced toward the left when vehicle went up the obstacle and toward the right when the vehicle went down it. The torsion of the wheel when the vehicle went down the obstacle was larger than that when it went up ,so it turned right 5 degrees. Sinc hydraulic control steering decreased the steering angle , it turned right 3 degrees. These results suggest that a vehicle can be driven straight ahead with high precision when the steering angle is changed in response to the direction and inclination of the vehicle . Such results were obtained in a paddy field tests.

  • PDF

A Compact Rotman Lens with Wide Angle Steering Characteristics (광각 빔조향 특성을 갖는 소형 로트만 렌즈)

  • 이광일;김인선;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.500-506
    • /
    • 2002
  • This paper presents a design of wide angle steering microstrip Rotman lens operating over broadband frequency range for Electronic Warfare equipments. It has a compact and simple structure which it is easy to manufacture repetitively. The lens is modelled as a 2-dimension planar circuit, the contour integral method is performed over entire lens contour and the transmission coefficients from 8 beam ports to 8 array ports are found. The measured results are well agreed with those of analysis. Prediction of the multibeam array pattern fed by linear array antenna shows $\pm$65$^{\circ}$ of beam steering and $\pm$5 dB insertion loss deviation over 3:1 frequency range.

Online Control of DC Motors Using Fuzzy Logic Controller for Remote Operated Robots

  • Prema, K.;Kumar, N. Senthil;Dash, Subhransu Sekhar
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.352-362
    • /
    • 2014
  • In this paper, a fuzzy logic controller is designed for a DC motor which can be used for navigation control of mobile robots. These mobile robots can be used for agricultural, defense and assorted social applications. The robots used in these fields can reduce manpower, save human life and can be operated using remote control from a distant place. The developed fuzzy logic controller is used to control navigation speed and steering angle according to the desired reference position. Differential drive is used to control the steering angle and the speed of the robot. Two DC motors are connected with the rear wheels of the robot. They are controlled by a fuzzy logic controller to offer accurate steering angle and the driving speed of the robot. Its location is monitored using GPS (Global Positioning System) on a real time basis. IR sensors in the robot detect obstacles around the robot. The designed fuzzy logic controller has been implemented in a robot, which depicts that the robot could avoid obstacle as well as perform its operation efficiently with remote online control.

STEERING CONTROL SYSTEM FOR AUTONOMOUS SMALL ORCHARD SPRAYER

  • B. S. Shin;Kim, S. H.;Kim, K. I.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.707-714
    • /
    • 2000
  • For self-guiding track-type orchard sprayer, a low-cost steering controller was developed using two ultrasonic sensors, two DC motors and 80196kc microprocessor. The operating principle of controller was to travel the sprayer between artificial targets such as wood stick placed every 1 m along both sides of the demanded path of speed sprayer. Measuring distances to both targets ahead with the ultrasonic sensors mounted on the front end of sprayer, the controller could determine how much offset the position of sprayer was laterally. Then the steering angle was calculated to actuate DC motors connected to the steering clutches, where the fuzzy control algorithm was used. Equipped with the controller developed in this research, the sprayer could be traveled along demanded path, the centerline between targets, at speeds of up to 0.4m/sec with an accuracy of ${\pm}$20cm.

  • PDF

A Study on the Improvement of Forming Process of Power Assisted Steering Part (PAS부품의 공정개선에 관한 연구)

  • 윤대영;황병복;유태곤
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.265-273
    • /
    • 2000
  • The conventional and new forging processes of the power steering worm blank are analyzed by the rigid-plastic finite element method. The conventional process contains three stages such as indentation, extrusion and upsetting, which was designed by a forming equipment expert. Process conditions such as reduction in area, semi-die angle and upsetting ratio are considered to prevent internal or geometrical defects. The results of simulation of the conventional forging process are summarized in terms of deformation patterns, load-stroke relationships and die pressures for each forming operation. Based on the simulation results of the current three-stage, the power steering worm blank forging process for improving the conventional process sequence is designed. Die pressures and forming loads of proposed process are within limit value which is proposed by experts and the proposed process is found to be proper for manufacturing the power steering worm blank.

  • PDF