• Title/Summary/Keyword: steep slope failure

Search Result 33, Processing Time 0.018 seconds

A Study on the Deformation Behavior of the Segmental Grid Retaining Wall Using Scaled Model Tests (조립식 격자 옹벽의 변형거동에 관한 모형실험 연구)

  • Bae, Woo-Seok;Kwon, Young-Cheul;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.350-359
    • /
    • 2007
  • Most large cut slopes of open pit mines, roadways, and railways are steeply inclined and composed with rocks that do not contain soils. However, these rock slopes suffer both weathering and fragmentation. In the case of steep slopes, falling rock and collapse of a slope may often occur due to surface erosion. Cast-in place concrete and rubble work are the most widely used earth structure-based pressure supports that act as restraints against the collapse of the rock slope. In order to overcome the shortcomings of conventional retaining walls, a segmental grid retaining wall is being used with connects precasted segments to construct the wall. In this study, laboratory model test was conducted to estimate deformation behavior of segmental grid retaining wall with configuration of rear strecher, height and inclination of the wall. In order to examine the behavior characteristics of a segmental grid retaining wall, this research analyzes the aspects of spacial displacement through relative displacement according to change in the inclination of the wall. Also, the walls behavior according to the formation and status of the rear stretcher which serves the role of transferring the load from the header and the stretcher which make up the wall, the displacement of backfill materials in the wall, and the location of the maximum load were surveyed and the characteristics of displacement in the segmental grid retaining wall were observed. The test results of the segmental grid retaining wall showed that there was a sudden increase in failure load according to the decrease in the wall's height and the size of the in was greatly decreased. Furthermore, it revealed that with identical inclination and height, the structure of the rear stitcher did not greatly affect the starting point or size of maximum horizontal displacement, but rather had a stronger effect on the inclination of the wall.

Characteristics of Rainfall, Geology and Failure Geometry of the Landslide Areas on Natural Terrains, Korea (우리나라 자연사면 산사태지역의 강우, 지질 및 산사태 기하형상 고찰)

  • Kim, Won-Young;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.331-344
    • /
    • 2009
  • Large landslides occurred since 1990 on natural terrain, Korea were reviewed with the existing data to characterize them in terms of the condition of rainfall, geology and geometry. Ten landslide areas over the nationwide are selected for this study. Among them, five areas consist of granite basement, four areas of granite and metamorphic rocks and the remaining an area of gabbro. The basement lithology on which landslides most dominantly occurred is granite, on which 58% of landslides among the total 3,435 are taken place, the next dominant one is metamorphic rocks where 24% of landslides are occurred, and the remaining 18% are on the areas of volcanic and sedimentary rocks which are partly distributed in some areas. The landslide occurrences may depend on the rainfall intensities rather than durations. We applied the theories of Caine's threshold and Olivier's final response coefficient to the Korean cases. The rainfall conditions at the landslide areas were all satisfied enough with the landslide triggering conditions suggested by Caine and Olivier. The triggering mechanism and type of landslides may largely depend on the weathering and geomorphic characteristics of basement lithology. The granite areas are characterized by being relatively shallow but consistent weathering profiles and almost no outcrop, and therefore, shallow translational slides are dominant. Whereas metamorphic areas are characterized by consisting of steep slope, weathered outcrops on ridges and partly on flanks and irregular weathering profiles, and relatively large debris flows are dominant.

Optimum Reinforcement Conditions of Large Diameter Reinforcement for Steep Slope of Conventional Railway Embankment under Train Loading (기존선 성토사면 급구배화를 위한 열차 하중 하 대구경 봉상보강재의 최적 보강조건)

  • Kwak, Chang-Won;Kim, Dae-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.43-50
    • /
    • 2016
  • A reinforcement is required to ensure the structural safety in case of railway embankment excavation under railway load. A large diameter soil nailing with concrete wall is applied as the reinforcement method instead of the conventional soil nailing system. In this study, a series of 3 dimensional numerical analyses are performed to investigate the optimum reinforcement considering 15 different conditions based on the length, lateral spacing, diameter, and inclination of the reinforcement. The interface between soil nail and perimetric grout is considered by means of cohesion, stiffness and perimeter of the grout. 0.3 m of reinforcement diameter is assessed as the most appropriate based on the economical viewpoint though ground displacement decreases with the increase of diameter, however the difference of displacement is negligible between 0.4 m and 0.3 m of diameter. Surface settlement, lateral displacement of wall, and stress of reinforcement are calculated and economic viewpoint to reinforce embankment considered. Consequently, the optimum reinforcement conditions considering those factors are evaluated as 3 m in length, 0.3 m in diameter, 1.5 m in lateral spacing, and 10 degree of inclination angle in the case of 3 m of excavation depth. Additionally, inclined potential failure surface occurs with approximately 60 degrees from the end of nails and the surface settlement and wall lateral displacement are restrained successfully by the large diameter soil nailing, based on the result of shear strain rate.