Browse > Article

Characteristics of Rainfall, Geology and Failure Geometry of the Landslide Areas on Natural Terrains, Korea  

Kim, Won-Young (Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources)
Chae, Byung-Gon (Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
The Journal of Engineering Geology / v.19, no.3, 2009 , pp. 331-344 More about this Journal
Abstract
Large landslides occurred since 1990 on natural terrain, Korea were reviewed with the existing data to characterize them in terms of the condition of rainfall, geology and geometry. Ten landslide areas over the nationwide are selected for this study. Among them, five areas consist of granite basement, four areas of granite and metamorphic rocks and the remaining an area of gabbro. The basement lithology on which landslides most dominantly occurred is granite, on which 58% of landslides among the total 3,435 are taken place, the next dominant one is metamorphic rocks where 24% of landslides are occurred, and the remaining 18% are on the areas of volcanic and sedimentary rocks which are partly distributed in some areas. The landslide occurrences may depend on the rainfall intensities rather than durations. We applied the theories of Caine's threshold and Olivier's final response coefficient to the Korean cases. The rainfall conditions at the landslide areas were all satisfied enough with the landslide triggering conditions suggested by Caine and Olivier. The triggering mechanism and type of landslides may largely depend on the weathering and geomorphic characteristics of basement lithology. The granite areas are characterized by being relatively shallow but consistent weathering profiles and almost no outcrop, and therefore, shallow translational slides are dominant. Whereas metamorphic areas are characterized by consisting of steep slope, weathered outcrops on ridges and partly on flanks and irregular weathering profiles, and relatively large debris flows are dominant.
Keywords
landslide; rainfall intensity; rainfall duration; basement; weathering; geometry;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 박덕근, 2006, 우리나라 지반재해와 방재정책, 2006년 지질공학 심포지움 발표논문집, 41-49
2 박용원, 김감래, 여운광, 1993, 1991년 용인-안성지역 산사태 연구. 한국지반공학회지, 9(4), 103-116
3 김원영, 채병곤, 김경수, 기원서, 조용찬, 이사로, 김정환, 윤운상, 2000, 산사태 예측 및 방지기술 연구, 한국지질자원연구원, 315
4 우충식, 이창우, 정용호, 2008, 산사태 발생지 예측을 위한 Topographic Position Index의 적용성 연구, 한국환경복원녹화기술학회지, 11(2), 1-9
5 한중근, 2001, 부산지역에서의 강우와 산사태의 특성분석, 한국환경복원녹화기술학회지, 4(1), 24-31
6 Brand, E. W., 1985, Predicting the performance of the residual soil slopes, Proc., 11th ICSMFE, San Francisco, 2541-2573
7 Caine, N., 1980, The rainfall intensity-duration control of shallow landslides and debris flows, Geografiska Annaler, 62A, 23-27
8 Brunsden, D., 1985, Landslide types, mechanism, recognition, identification. In Landslides in the South Wales Coalfield, Proceedings Symposium, 1-3 April, 1985. The Poly. of Wales, 19-28
9 김원영, 채병곤, 조용찬, 김경수, 이춘오, 최영섭, 2004, 산사태 예측 및 방지기술 연구, 한국지질자원연구원, 315
10 마호섭, 정원욱, 박진원, 2008, 국립공원의 산사태 발생 위험지역 예측기법 개발, 한국임학회지, 97(3), 326-331
11 Ikeya, H., 1989, Debris flow and its countermeasures in Japan, Bull. of the IAEG, 40, 15-33   DOI
12 내무부 중앙재해대책본부, 1991, 재해년보
13 김원영, 이사로, 김경수, 채병곤, 1998, 지형 특성에 따른 산사태의 유형 및 취약성 -연천-철원지역을 대상으로, 대한지질공학회지, 8(2), 115-130
14 Fausto, G., Silvia P., Mauro R., and Colin P. S., 2008, The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5(1), 3-17   DOI   ScienceOn
15 김경수, 김원영, 채병곤, 조용찬, 2000, 강우에 의한 산사태의 지질공학적 특성 -충청북도 보은지역-, 대한지질공학회지, 10(2), 163-174
16 홍원표, 김윤일, 김상규, 한중근, 김마리아, 1990, 강우로 기인되는 우리나라 사면활동의 예측, 대한토질공학회지, 6(2), 159-167
17 Crosta, G. B., and Frattini P., 2001, Rainfall thresholds for triggering soil slips and debris flow, Proceedings of the 2nd EGS Plinius Conference on Mediterranean Storms, Italy, 463-487
18 Siddle, R. C., Pierce, A. J., and O'Loughin, C. O., 1985, Hillslope stability and landuse, Am. Geophys. Un. Water Resource Monograph, 11, 1-140
19 Varnes, D. J., 1978, Slope movement types and process, National Academy of Science, Washington, D C., Special report, 2, 11-33
20 김기홍, 원상연, 윤준희, 송영선, 2008, 강릉지역 국도의 재해위험성 평가, 한국지형공간정보학회지, 16(4), 33-39
21 Olivier, M., Bell, F. G., and Jemy, C. A., 1994, The effect of rainfall on slope failure, with examples from the Greater Durban area, Proceedings 7th intern. Cong. IAEG, 3, 1629-1636
22 채병곤, 김원영, 이춘오, 김경수, 조용찬, 송영석, 2005, 지질조건에 따른 사태물질 이동특성 고찰, 대한지질공학회지, 15(2), 185-199
23 Yagi, N., and Yatabe, R., 1987, Prediction model of slope failure in sandy soil due to rainfall, Proc., 8th Asian Regional Conf., Soil Mechanics and Foundation Engineering, 1, 217-220
24 서흥석, 한성길, 2003, 2002년 강릉지역에서 발생된 산사태의 특성에 관한 연구, 한국지반공학회논문집, 19(4), 107-119
25 기상청, 1991, 예보사례분석집, 경기남부지방(수원, 용인) 집중호우-1991년 7월21일, 73-109
26 Innes, J. L., 1983, Debris flows, Prog. Physical Geography, 7, 469-501   DOI
27 김경수, 송영석, 조용찬, 김원영, 정교철, 2006, 지질조건에 따른 강우와 산사태의 특성분석, 대한지질공학회지,16(2), 201-214
28 김원영, 채병곤, 이춘오, 김경수, 조용찬, 송영석, 최영섭, 서용석, 2006, 산사태 위험도 산정시스템 및 피해저감기술 개발, 한국지질자원연구원, 360
29 채병곤, 조용찬, 송영석, 김경수, 이춘오, 이병주, 김만일, 2008, 산사태 피해규모 정량화 및 최적피해저감기술개발, 한국지질자원연구원, 566
30 Cannon, S. H. and Gartner J. E., 2005, Wildfire-related debris flow from a hazard prospective, Springer, Berlin, 363-385
31 Costa, J. E., 1984, Physical geomorphology of debris flows. In developments and Applications of Geomorphology (Eds J. E. Costa and P. J. Fleisher). Springer-Verlag, 268-317
32 Johnson, A. M., and Rodine, J. R., 1984, Debris flows, In Slope Instability (Eds D. Brunsden and D. Prior), 257-361