• Title/Summary/Keyword: steel-making

Search Result 559, Processing Time 0.022 seconds

Development of Perforating Die for Manufacturing Fine Multi-perforated type Nail Files (미세 다수공 타입의 네일파일 제조용 퍼퍼레이팅 금형 개발)

  • 김세환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.4
    • /
    • pp.309-314
    • /
    • 2004
  • 0.5mm thick steel is used to manufacture nail files. The first process is blanking and the second process is making about 300 holes of 0.8-l.0mm in diameter. This process depends mainly on etching which takes 33% of manufacturing cost and it can make manufacturing cost rise. The residual etching reagent is not environmentally friendly and the steel material is apt to rust as well. To solve these problems, researches on the following subjects are performed: proper material to prevent from rusting and strip layout strategies in stamping to replace etching process with press process which makes use of die. And new quill type punch is developed to replace the regular standard punch, one of the die parts, which frequently get broken while working. And these researches and developments lead to develop a progressive perforating die.

  • PDF

Redistributions of Welding Residual Stress for CTOD Specimen by Local Compression (Local compression에 의한 CTOD 시편내의 용접잔류응력 재분포)

  • Joo, Sung-Min;Yoon, Byung-Hyun;Chang, Woong-Seong;Bang, Han-Sur;Bang, Hee-Seon;Ro, Chan-Seung
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.31-35
    • /
    • 2009
  • When conducting CTOD test, especially in thick welded steel plate, fatigue pre-cracking occasionally failed to satisfy the requirements of standards thus making the test result invalid. Internally accumulated residual stress of test piece has been thought as one of the main reasons. The propagation of fatigue crack, started from the tip of machined notch, which might have propagated irregularly due to residual stress field. To overcome this kind of difficulty three methods to modify the residual stress are suggested in standard i.e. local compression, reverse bending and stepwise high-R ratio method. In this paper not only multi pass welding but also local pre-compressing process of thick steel plate has been simulated using finite element method for clarifying variation of internal welding residual stress. The simulated results show that welding residual stress is compressive in the middle section of the model and it is predominantly increased after machining the specimen. Comparing as-welded state all component of the welding residual stress changing to compressive in the tip of machine notch whereas residual stress of the outer area remain as tensile condition relatively. Analysis results also show that this irregular residual stress distribution is improved to be more uniformly by applying local compression.

Mushroom skeleton to create rocking motion in low-rise steel buildings to improve their seismic performance

  • Mahdavi, Vahid;Hosseini, Mahmood;Gharighoran, Alireza
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.639-654
    • /
    • 2018
  • Rocking motion have been used for achieving the 'resilient buildings' against earthquakes in recent studies. Low-rise buildings, unlike the tall ones, because of their small aspect ratio tend to slide rather than move in rocking mode. However, since rocking is more effective in seismic response reduction than sliding, it is desired to create rocking motion in low-rise buildings too. One way for this purpose is making the building's structure rock on its internal bay(s) by reducing the number of bays at the lower part of the building's skeleton, giving it a mushroom form. In this study 'mushroom skeleton' has been used for creating multi-story rocking regular steel buildings with square plan to rock on its one-by-one bay central lowest story. To show if this idea is effective, a set of mushroom buildings have been considered, and their seismic responses have been compared with those of their conventional counterparts, designed based on a conventional code. Also, a set of similar buildings with skeleton stronger than code requirement, to have immediate occupancy (IO) performance level, have been considered for comparison. Seismic responses, obtained by nonlinear time history analyses, using scaled three-dimensional accelerograms of selected earthquakes, show that by using appropriate 'mushroom skeleton' the seismic performance of buildings is upgraded to mostly IO level, while all of the conventional buildings experience collapse prevention (CP) level or beyond. The strong-skeleton buildings mostly present IO performance level as well, however, their base shear and absolute acceleration responses are much higher than the mushroom buildings.

An Experimental Study on Developing Ultra-High Strength Powder Concrete Using Low-heat Portland Cement (저열 포틀랜드 시멘트를 사용한 초고강도 분체 콘크리트 개발에 관한 실험적 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Kim, Heoun;Park, Jin-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.135-147
    • /
    • 2009
  • In order to develop the ultra high strength concrete over 400Mpa at 28 day, Low-heat portland cement, ferro-silicon, silica-fume and steel fiber were mixed and tested under the special autoclave curing conditions. Considering the influence of Ultra high strength concrete. normal concrete is used as a comparison with low water-cement ratio possible Low-heat portland cement. Additionally, as a substitution of aggregates, we analyzed the compressive strength of Ferro Silicon by making the states of mixed and curing conditions differently. In addition, SEM films testified the development of C-S-H hydrates of Type III & Type IV, and tobermolite, zonolite due to the high temperature, high pressure of autoclave curing. Fineness of aggregate, filler and reactive materials in concrete caused 420Mpa compressive strength at 28day successfully.

The Effect of Reflection and Mentoring Based on Gender - Sensitive Teaching Strategies (성인지적 교수전략을 바탕으로 한 수업 성찰과 멘토링 효과)

  • Hong, Kyung-Sun;Kim, Dong-Ik;Gu, Su-Yeon;Ahn, Jin-Kyung
    • Journal of Engineering Education Research
    • /
    • v.14 no.2
    • /
    • pp.40-50
    • /
    • 2011
  • This study is to investigate an effective instruction for female students in an engineering classroom through gender -sensitive teaching strategies by analysing recorded classroom instruction, reflective journals of professor, and mentoring instructions of A professor teaching "non-steel materials and design" in an engineering classroom. This study which used a qualitative approach for data collection and analysis showed changes of A professor in his way of teaching. The changes are: making rough lesson plan ${\rightarrow}$ making detailed lesson plan being satisfied with his teaching skills ${\rightarrow}$ trying to improve his teaching skills, using negative feedback ${\rightarrow}$ using positive feedback, pointing weaknesses as pre-engineers ${\rightarrow}$ providing detailed information needed to be engineers. This paper deals with the theory comparison between a conventional engineering education and new engineering education, in which conventional models may fail to give satisfactory results. Finally, we provide real application examples to evaluate the feasibility and generality of the proposed method in this paper.

Study on the Synchronous Recycling of EAF Dust and Waste PVC (폐PVC와 전기로 제강분진의 동시재활용을 위한 기초연구)

  • Lee GyeSeung;Song YuungJun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.47-56
    • /
    • 2003
  • PVC(polyvinyl chloride) powder were mixed with EAF(Electric Arc Furnace) dust and made as pellets. In order to recover the hydrochloride emitted from pyrolysis of PVC and the valuable metals in dust through making chlorides, pellets were roasted at $300 ^{\circ}C$ and investigated about the generation of chlorides. Two dust samples were collected at I steel making Co. and P Co. (called I dust and P dust respectively), which were mainly composed of zincite and franklinite. It was confirmed that about 50% of Zn in I dust and 48% of Zn in P dust compose zincite. The emission of HCl gas was completed in 15 min at 30$0^{\circ}C$ and the HCl mostly reacted with dust and made chlorides under 20% PVC mixed ratio. Because the reaction of HCl with zincite was faster than with franklinit, when generation and volatilization of ferric chloride is not allowed, the equivalent PVC powder mixed ratio in pellet depended on the amount of zincite in dust.

A Convergence Study on the Reaction Injection Mold Using Ultra High Strength Concrete (초고강도 콘크리트를 이용한 반응 사출 금형에 관한 융합 연구)

  • Jaung, Jae-Dong;Kim, Hong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.211-217
    • /
    • 2020
  • There is an increasing demands of more efficient and economical ways of mold making according to the spreading trend of small quantity batch production system. Therefore, this study aims to examine the applicability of ultra high strength concrete, which has a compressive strength over 80MPa, as a mold material. The ultra high strength concrete has several advantages such as lower cost, lighter weight and convenience of shape making compared to the traditional mold materials. Although the strength of the ultra high strength concrete is lower than that of the tool steel, it was considered to be useful for small batch processes with relatively low pressure. Therefore, in this study, a prototype mold for reaction injection molding of polyurethane was developed using ultra high strength concrete and it was examined that the possibility and characteristics of concrete as a mold material.

Agent-Based Modeling and Design of Water Reuse Network in Eco-Industrial Park (EIP) (생태산업단지에서 용수재이용 네트워크의 에이전트 기반 모델링 및 설계)

  • Kim, HyunJoo;Yoo, ChangKyoo;Ryu, Jun-Hyung;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.369-375
    • /
    • 2008
  • To achieve zero-emission, one of the main goals of an eco-industrial park (EIP), it is needed to develop an effective water exchange network. The network includes various subsystems and decision making processes, which make the modeling process extremely complicated. Agent-based modeling was used to simulate water exchange network in an EIP. Firm agents were created based on the behavior pattern of firms, and an agent-based model (ABM) was made with the agents, showing the growth of the exchange network. An existing steel and iron making industrial park was chosen as a case study, and the ABM model shows eco-efficient behavior with a decreased environmental cost. Water reuse network based on the ABM model results in 35% decrease of the fresh water supply and 50% reduction of the wastewater generation in EIP. A case study shows that agent-based model can be a powerful tool in modeling and designing complex eco-industrial parks, especially when a part of the system needs to be changed.

Development of kW Class SOFC Systems for Combined Heat and Power Units at KEPRI

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Keun-Bae;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.772-776
    • /
    • 2008
  • The Korea Electric Power Research Institute (KEPRI) has been developing planar solid oxide fuel cells (SOFCs) and power systems for combined heat and power (CHP) units. The R&D work includes solid oxide fuel cell (SOFC) materials investigation, design and fabrication of single cells and stacks, and kW class SOFC CHP system development. Anode supported cells composed of Ni-YSZ/FL/YSZ/LSCF were enlarged up to $15{\times}15\;cm^2$ and stacks were manufactured using $10{\times}10\;cm^2$ cells and metallic interconnects such as ferritic stainless steel. The first-generation system had a 37-cell stack and an autothermal reformer for use with city gas. The system showed maximum stack power of about $1.3\;kW_{e,DC}$ and was able to recover heat of $0.57{\sim}1.2\;kW_{th}$ depending on loaded current by making hot water. The second-generation system was composed of an improved 48-cell stack and a prereformer (or steam reformer). The thermal management subsystem design including heat exchangers and insulators was also improved. The second-generation system was successfully operated without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_{e,DC}$ with hydrogen and $1.2\;kW_{e,DC}$ with city. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water. Recently KEPRI manufactured a 2kW class SOFC stack and a system by scaling up the second-generation 1kW system and will develop a 5kW class CHP system by 2010.

Using element-embedded rebar model in ANSYS for the study of reinforced and prestressed concrete structures

  • Lazzari, Bruna M.;Filho, Americo Campos;Lazzari, Paula M.;Pacheco, Alexandre R.
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.347-356
    • /
    • 2017
  • ANSYS is a software well accepted by professionals and academics, since it provides a variety of finite elements, material constitutive models, and linear and nonlinear analysis of structures in general. For the concrete material, for instance, the software uses an elastoplastic model with the Willam-Warnke surface of rupture (1975). However, this model is only available for finite elements that do not offer the possibility of use of the element-embedded model for rebars, demanding a much larger amount of elements to discretize structures, making numerical solutions less efficient. This study is, therefore, about the development of a computational model using the Finite Element Method via ANSYS platform for nonlinear analysis of reinforced and prestressed concrete beams under plane stress states. The most significant advantage of this implementation is the possibility of using the element-embedded rebar model in ANSYS with its 2D eight-node quadratic element PLANE183 for discretization of the concrete together with element REINF263 for discretization of rebars, stirrups, and cables, making the solutions faster and more efficient. For representation of the constitutive equations of the steel and the concrete, a proposed model was implemented with the help of the UPF customization tool (User Programmable Features) of ANSYS, where new subroutines written in FORTRAN were attached to the main program. The numerical results are compared with experimental values available in the technical literature to validate the proposed model, with satisfactory results being found.