• Title/Summary/Keyword: steel-joint

Search Result 1,342, Processing Time 0.022 seconds

Optimum topology design of geometrically nonlinear suspended domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.667-694
    • /
    • 2015
  • The suspended dome system is a new structural form that has become popular in the construction of long-span roof structures. Suspended dome is a kind of new pre-stressed space grid structure that has complex mechanical characteristics. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The length of the strut, the cable initial strain, the cross-sectional area of the cables and the cross-sectional size of steel elements are adopted as design variables and the minimum volume of each dome is taken as the objective function. The topology optimization on lamella dome is performed by considering the type of the joint connections to determine the optimum number of rings, the optimum number of joints in each ring, the optimum height of crown and tubular sections of these domes. A simple procedure is provided to determine the configuration of the dome. This procedure includes calculating the joint coordinates and steel elements and cables constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). This paper explores the efficiency of lamella dome with pin-joint and rigid-joint connections and compares them to investigate the performance of these domes under wind (according to the ASCE 7-05), dead and snow loading conditions. Then, a suspended dome with pin-joint single-layer reticulated shell and a suspended dome with rigid-joint single-layer reticulated shell are discussed. Optimization is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for suspended domes.

Characteristics of Brazed Joint of Sintered Bronze/steel Using Ag-Cu-Zn Type Filler Materials (Ag-Cu-Zn-Cd 계 용가재를 이용한 Bronze 소결체/강의 브레이징 접합부 특성 평가)

  • 이정훈;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.79-89
    • /
    • 1999
  • The study was carried out to examine in more detail metallurgical and mechanical properties of brazed joints of diamond cutting wheel. In this work, shank(mild steel) and sintered bronze-base tips were brazed with three different filler materials(W-40, BAgl and BAg3S). The machine used in this work was a high frequency induction brazing equipment. The joint thickness, porosities and microstructure of brazed joints with brazing variables(brazing temperature, holding time) were evaluated with OLM, SEM, EDS and XRD. Bending(torque) test was also performed to evaluate strength of brazed joints. Further wetting test was performed in a vacuum furnace in order to evaluate the wettability of filler metals on base metals9shank and tips). The brazing temperature had a strong influence on the joint strength and the optimum brazing temperature range was about $700~850^{\circ}C$ for the bronze/steel combinations. The strength of the brazed joint was found to be influenced by the three factors : degree of reaction region, porosity content, joint thickness. The reaction region was formed in the bronze-base tip adjacent to the joint. The reaction region resulted in a bad influence on the strength due to the formation of Cu5.6Sn, CuZn4, $\beta(CuZn)$ and CdAg, etc. Porosities increased as brazing variables(brazing temperature, holding time) increased, and the brazed joints with porosities of less than about 3-5% had an optimum strength for the bronze-base tip.

  • PDF

A Study on the Lap Joint $CO_2$ Laser Welding of Different Gauge Sheets Using ANOVA in Characteristic Zones (특징영역별 분산분석에 의한 이종두께 겹치기 $CO_2$ 레이저 용접에 대한 연구)

  • 이경돈
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.122-128
    • /
    • 2002
  • The laser welding in the automotive industries has been used widely for the butt joint of blank sheets rather than the lap joint of automotive body panels. But as a substitute far the spot welding of automotive body panels, the so called three dimensional laser welding will be important far the body panel engineers. Specially the laser welding of body panels with a smooth weld line is applied increasingly, for example, to the side panels. So far, some criteria of the laser weld quality was suggested by in-house regulations or national standards from experiences and/or rule of thumbs. In the manufacturing places, a go or no-go criterion is adopted because of the simplicity or a lack of rational criteria. It is true specially for the selection of the process parameters, which gives the basic causes for the good quality of laser welds. In this study, the effects of joint combination, gap and welding speed on the lap joint $CO_2$ laser welding of two mild steel sheets with different thicknesses are obtained through a $2{\times}3{\times}7$ factorial experiment. The results of the weld quality are statistically analysed using analysis of variance (ANOVA) and compared between two characteristic zones, which are separated by the type of sectional shapes and the level of input energy per volume. The thickness combinations are 0.8mm/1.2mm, 1.2mm/0.8mm of mild steel sheets. The welding speed covers from the deep penetration to the partial penetration. The gap size has three levels of no-gap, 0.16m, and 0.26mm. The bead width, penetration depth and input energy per volume are measured and used as the weld quality criteria.

Very long life fatigue behaviors of 16Mn steel and welded joint

  • Liu, Yongjie;He, Chao;Huang, Chongxiang;Khan, Muhammad K.;Wang, Qingyuan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.889-901
    • /
    • 2014
  • Very long life fatigue tests were carried out on 16Mn steel base metal and its welded joint by using the ultrasonic fatigue testing technique. Specimen shapes (round and plate) were considered for both the base metal and welded joint. The results show that the specimens present different S-N curve characteristics in the region of $10^5-10^9$ cycles. The round specimens showed continuously decreasing tendency while plate specimens showed a steep decreasing step and an asymptotic horizontal one. The fatigue strength of round specimen was found higher than plate specimen. The fatigue strength of as-welded joint was 45.0% of the base material for butt joint and 40% for cruciform as-welded joint. It was found that fracture can still occur in butt joint beyond $5{\times}10^6$ cycles. The cruciform joint has a fatigue limit in the very long life fatigue regime ($10^7-10^9$ cycles). Fatigue strength of butt as-welded joint was much higher as compared to cruciform as-welded joint. Improvement in fatigue strength of welded joint was found due to UPT. The observation of fracture surface showed crack mainly initiated from welded toe at fusion areas or geometric discontinuity sites at the surface in butt joint and from welded toe in cruciform joint.

Seismic Performance of RC Column-Steel Beam Connections for Large Columns (대형기둥 적용을 위한 철근콘크리트기둥-강재보 접합부의 내진성능)

  • Park, Hong Gun;Lee, Ho Jun;Kim, Chang Soo;Hwang, Hyeon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • Earthquake resistance of RC column-steel beam (RCS) joints with simplified details were studied. Simplified details are necessary for large columns to improve the productivity and constructability. To strengthen the beam-column joint, the effects of transverse beams, studs, and U-cross ties were used. Four 2/3 scale interior RCS connections were tested under cyclic lateral loading. The specimens generally exhibited good deformation capacity exceeding 4.0% story drift ratio after yielding of both beam and beam-column joint. Ultimately, the specimens failed by shear mechanism of the joint panel. The test strengths were compared with the predictions of existing design methods.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

A study on the welding performance of korean automatic gas pressure welding machine by external appearance investigation (외관검사를 통한 한국형 철근자동가스압접기의 압접성능 연구)

  • Seo, Deok-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.161-166
    • /
    • 2008
  • This study is focused on the welding performance of automatic gas pressure welding machine adapted to korean construction site by external appearance investigation. As gas pressure welding is more economical and has good performances compared with other steel bar jointing methods, as arc welding and mechanical joint etc, in Japan, the gas pressure welding is one of the typical connection of steel reinforcement when connecting the D29 and thicker steel bars, But in Korea, gas pressure welding joint method is not widely used caused by the shortage of skilled workers. so to activate the gas pressure welding in Korea, the automatic gas pressure welding machine is developed. In this study, the welding performances of gas pressure welding joint samples using korean automatic gas pressure welding machine are measured by external appearance investigation - blown diameters, blown length, welding face disagreement, central axis eccentric ratio, bending, sag and crack. The results of welding performances on the gas pressure welding joint samples show that samples are satisfied with the standard value regulated in KS D 0244 and JIS Z 3120.

The Evaluation of Residual Stresses in the Welded Joint of Steel Materials by the Optimum Selection of the Advanced Indentation Technique (연속압입시험의 최적조건 선정을 통한 철강재료의 용접부 잔류응력 평가)

  • Yu, Seung-Jong;Kim, Joo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.118-126
    • /
    • 2007
  • Most of materials receive forces in use so that the characteristics of materials must be considered in system design to prevent deformation or destruction. Mechanical properties of materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties are strength, hardness, ductility and stiffness. Currently, among major measure facilities to measure the mechanical properties, advanced indentation technique has important use in industrial areas due to nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to find out non-equi-biaxial stress state and the results were compared with general residual stress analyzing method fur verification.

The Effects of GMAW Parameters on Penetration, Hardness and Microstructure of AS3678-A350 High Strength Steel

  • Kaewsakul, Nut;Putrontaraj, Rungsuk;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.169-178
    • /
    • 2015
  • This research aims to study the effects of various welding parameters in gas metal arc welding (GMAW) process on welding penetration, microstructure and hardness of AS3578-A350 high strength steel with the thickness of 10 mm. The welding process parameters were a welding current of 100-200A, an arc voltage of 20-30V, a welding speed of 20-60 cm/min and a gas shielding type of Ar and $Ar+CO_2$. The summarized experimental results are as follows. An increase of the welding current and voltage affected to increase the penetration depth of the joint. However, when the welding speed was decreased, it increased the penetration depth of the joint. Using the Ar gas for shielding the weld area, produced the higher penetration depth and the less narrow weld bead than the joint that was shielded by the mix gas of $Ar+CO_2$. The variation of the welding process parameters affected to produce the various microstructures of weld metal and heat affected zone and also showed the various kind of hardness along the weld joint.

The effects of stirrups and the extents of regions used SFRC in exterior beam-column joints

  • Gencoglu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.223-241
    • /
    • 2007
  • Seven full-scale exterior beam-column joints were produced and tested under reversible cyclic loads to determine. Two of these seven specimens were produced using ordinary reinforced concrete (RC). Steel Fiber Reinforced Concrete (SFRC) was placed in three different regions of the beams of the rest five specimens to determine the extent of the region where SFRC is the most effective. The extent of the region of SFRC was kept constant at the columns of all five specimens. Three of these five specimens which had one stirrup in the joint, were tested to evaluate the effect of the stirrup on the behavior of the beam-column joint together with SFRC. In production of the specimens with SFRC, all special requirements of the Turkish Earthquake Code related to the spacing of hoops were disregarded. Previous researches reported in the literature indicate that the fiber type, the volume content, and the aspect ratio of steel fibers affect the behavior of beam-column joints produced with SFRC. The results of the present investigation show that the behavior of exterior beam-column joints depends on the extent of the region where SFRC is used and the usage of stirrup in the joint, in addition to the parameters listed in the literature.