• Title/Summary/Keyword: steel-girder bridges

Search Result 448, Processing Time 0.023 seconds

An Experimental Study on Joint Structures of Composite Truss Bridges (복합 트러스 교량의 연결구조에 대한 실험적 연구)

  • Shim, Chang Su;Park, Jae Sik;Kim, Kwang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.303-312
    • /
    • 2007
  • Steel box girder bridges are being commonly designed for medium-span bridges of span length. Composite truss bridges with steel diagonals instead of concrete webs can be an excellent design alternative, because it can reduce the dead weight of superstructures. One of the key issues in the design of composite truss bridges is the joint structureconnecting the diagonal steel members with the upper and lower concrete slabs. Because the connection has to carry concentrated combined loads and the design provisions for the joint are not clear, it is necessary to investigate the load transfer mechanism and the design methods for each limit state. There are various connection details according to the types of diagonal members. In this paper, the joint structure with group stud connectors welded on a gusset plate is used. Push-out tests for the group stud connectors of were performed. The test results showed that the current design codes on the ultimate strength ofthe stud connection can be used when the required minimum spacing of stud connectors is satisfied. Flexure-shear tests were conducted to verify the applicability of the design provisions for combined load effects to the strength of joint structures. To increase the pullout strength of the connection, bent studs were proposed and utilized for the edge studs in the group arrangement of the joint. The results showed that the details of the joint structure were enhanced. Thereafter, design guidelines were proposed.

Evaluation on Bearing Capacity of End Girder Member with Local Corrosion (지점부 부재의 부식손상에 따른 강거더 단부 지압강도 평가)

  • Ahn, Jin Hee;Lee, Won Hong;Kim, In Tae;Jeong, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.74-82
    • /
    • 2017
  • Localized corrosions damages in their structural sections can be occurred affected by installed environment conditions with high temperature as near the coastline and humidity or their poor maintenance situation. In bearing supports of steel bridges, especially, lower web and vertical stiffener in end girder support can be easily corroded because of relatively higher humidity due to the narrow space in the end of girder and the wetted accumulated sediments affected by rain water or antifreezing admixture leaked from expansion joint. It can be related to change in their structural performance. In this study, thus, bearing strength test specimens were fabricated considering corrosion damage in the web and vertical stiffeners and the change in their bearing strengths were experimentally evaluated. From the test results, localized corrosion damage of structural members in the end girder affected the bearing strength of end girder support, especially, localized corrosion damage of the vertical stiffener relatively highly affected their bearing strengths.

An Experimental Study on 3-Dimension Aerodynamic Properties of Composite Cable Stayed Bridge (합성형 사장교의 3차원 공기역학적 특성에 대한 실험적 연구)

  • Min, In Ki;Chae, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.741-750
    • /
    • 2008
  • The aim of this study was to analyze the aerodynamic properties of the composite cable-stayed bridge by conducting three-dimensional wind tunnel tests. Focusing on the improved section of the bridge in the two-dimensional wind tunnel tests, the bridge's aerodynamic stability was estimated based on the angles of attack and the wind angles. The aerodynamic properties of vertical galloping, torsion galloping,and torsion flutter were also estimated based on the design wind velocity, and because much of the cable-stayed bridge was constructed using FCM, it was not sufficiently stiff during the bridge's construction. Therefore,the experience progressed by stages: from the full stage to the tow stage, and until the bridge became a single tower. Since the original plane was designed to be a steel box girder, the aerodynamic properties of the steel-box-type and composite-type girder could be compared. The results of this study can be utilized as basic data regarding the aerodynamic properties of medium-length and short composite cable-stayed bridges.

Performance Evaluation of Rahman-type Movable Joint System for Temporary Bridge (단부 수평가동-수직구속 부재를 적용한 라멘형 가설교량의 거동평가)

  • Kim, Sang Hyo;Joung, Jung Yeun;Heo, Won Ho;Jung, Chi Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Most rahmen-type temporary bridges are constructed with limited bridge length to prevent excessive horizontal forces due to the thermal expansion of main girder. To achieve a long length temporary bridge several independent bridges are required and they can not share the bents, at the rahmen-type ends, with the adjacent ones. The additional bents require more cost and reduce the section space under bridges. In order to remove extra bents with keeping the rahmen effect at the bridge ends, this study proposes a new rahmen-type movable joint system for temporary bridges.

Vertical Temperature Difference of Steel Box Girder Bridge Considering Asphalt Thickness of Concrete Deck (콘크리트 바닥판의 아스팔트 두께에 따른 강박스거더교의 상하 온도차)

  • Lee, Seong-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.602-608
    • /
    • 2019
  • The purpose of this study was to calculate the temperature difference of the sectional elevation according to the asphalt thickness of the steel box girder bridge deck and provide data on the design basis accordingly. Asphalt thicknesses produced four steel box girder model specimens of 0mm, 50mm, 100m and 150mm. In each model, 17 to 23 temperature sensors were attached to upper concrete and steel box girders. Six temperature gauges were selected to compare the temperature difference with Euro codes. The maximum and lowest temperature were calculated at the reference atmospheric temperature of each model, and the temperature difference (slope) was calculated based on this calculation. Four models of temperature difference are presented at each model. The 0mm to 100mm temperature difference models showed a -0.9 to -1.5 degree lower temperature difference compared to the temperature difference of Euro codes at the top of the slab. Overall, the measured temperature difference was found to be between 5.45% and 8.33% compared to the Euro code. The standard error coefficient, which was calculated by multiplying the average temperature with the standard error, was calculated from a range of 2.50 to 2.51 times the average at the top and bottom. It is estimated that the proposed temperature difference model can be used as a basic data when calculating temperature difference criteria for bridges in Korea.

Evaluation of Static Strength of Group Stud Shear Connection in Precast Concrete Deck Bridges (프리캐스트 콘크리트 바닥판 교량의 그룹 스터드 전단연결부 강도평가)

  • Shim, Chang Su;Jeon, Seung Min;Kim, Dong Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.333-345
    • /
    • 2008
  • concrete deck bridges are increasingly aplied to twin- girder bridges and open-stel box girder bridges.One of the most dificult isues in the design of shear conect ors is the mater of achieving ful composite action. Many connectors in smal area require a significant section los of precast decks resulting in difficult reinforcement details. In this closer spacing than the required minimum spacing in the design codes was evaluated through static tests. Test results s howed that the ultimate strength decreased as the conector spacing was reduced. The strength enhancement was observed due to aditional reinforcement for precast slabs or for shear pockets. Thus, the design of group stud shear connection needs to anticipate failure modes and the conector failure should be induced. Based on the test results, an empirical equation consi dering stud spacing was proposed to evaluate the ultimate strength of group stud shear conection. Fatigue tests showed n o reduction in fatigue life of the group stud shear conection in the range of this research. Details of the precast decks wer e enhanced using the findings of the study.

A Study of Local Buckling of Steel Bridge Girders subtended to Possible Load Conditions during Construction by Incremental Launching Method (ILM 시공시 발생할 수 있는 하중조합에 대한 강교량 주형의 국부좌굴 연구)

  • 염응준;강민철;황민오;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.203-209
    • /
    • 2004
  • Recently, various and new special methods of construction about steel bridges have been tried, and the study about local buckling under this methods have been performed too. But because of various cases, structural analysis is performed to check safety for each step of construction, and this is not efficient and economical method for time and manpower. So, for solution of this problems, general method about checking safety needs to he developed. In this study, local buckiling of web of girder due to various load cases under construction by ILM(Incremental Launching Method) will be studio considering various parameters such as forces, aspect ratio, boundary condition and so on. Also interaction curve will he plotted for each case.

  • PDF

Fatigue Capacity Evaluation of the Girder-Abutment Connection for the Steel-Concrete Composite Rigid-Frame Bridge Integrated with PS Bar (PS 강봉으로 일체화된 강합성 라멘교의 거더-교대 접합부에 대한 피로 성능 평가)

  • Ahn, Young-Soo;Oh, Min-Ho;Chung, Jee-Seung;Lee, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.249-258
    • /
    • 2012
  • Integral and rigid frame bridges have advantages in bridge maintenance and structural efficiency by eliminating expansion joints and bridge supports. However, the detail of typical girder-abutment connection is rather complex and increases construction cost depending on construction detail. For the purpose of compensating disadvantages such as complexity and additional cost, a new type of bridge is proposed in this study, which improves the efficiency of construction by simplifying the construction detail of girder-abutment connection. The proposed bridge has the connection detail of steel girder and abutment integrated by prestressed PS bar installed in the connection. In this study, finite element analysis and fatigue load test are conducted to evaluate the fatigue capacity of the proposed girder-abutment connection. The results of the finite element analysis revealed that the possibility of the fatigue damage in the girder-abutment connection is very low. The results of the fatigue load test verified that the integrity of the girder and abutment connection is maintained after 2,000,000 cycles of fatigue loading.

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.

Spatial mechanical behaviors of long-span V-shape rigid frame composite arch bridges

  • Gou, Hongye;Pu, Qianhui;Wang, Junming;Chen, Zeyu;Qin, Shiqiang
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.59-73
    • /
    • 2013
  • The Xiaolan channel super large bridge is unique in style and with greatest span in the world with a total length of 7686.57 m. The main bridge with spans arranged as 100m+220m+100m is a combined structure composed of prestressed concrete V-shape rigid frame and concrete-filled steel tubular flexible arch. First of all, the author compiles APDL command flow program by using the unit birth-death technique and establishes simulation calculation model in the whole construction process. The creep characteristics of concrete are also taken into account. The force ratio of the suspender, arch and beam is discussed. The authors conduct studies on the three-plate webs's rule of shear stress distribution, the box girder's longitudinal bending normal stress on every construction stage, meanwhile the distribution law of longitudinal bending normal stress and transverse bending normal stress of completed bridge's box girder. Results show that, as a new combined bridge, it is featured by: Girder and arch resist forces together; Moment effects of the structure are mainly presented as compressed arch and tensioned girder; The bridge type brings the girder and arch on resisting forces into full play; Great in vertical stiffness and slender in appearance.