• Title/Summary/Keyword: steel-framed building construction

Search Result 28, Processing Time 0.026 seconds

Vibration analysis and FE model updating of lightweight steel floors in full-scale prefabricated building

  • Petrovic-Kotur, Smiljana P.;Pavic, Aleksandar P.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.277-300
    • /
    • 2016
  • Cold-formed steel (CFS) sections are becoming an increasingly popular solution for constructing floors in residential, healthcare and education buildings. Their reduced weight, however, makes them prone to excessive vibrations, increasing the need for accurate prediction of CFS floor modal properties. By combining experimental modal analysis of a full-scale CFS framed building and its floors and their numerical finite element (FE) modelling this paper demonstrates that the existing methods (based on the best engineering judgement) for predicting CFS floor modal properties are unreliable. They can yield over 40% difference between the predicted and measured natural frequencies for important modes of vibration. This is because the methods were adopted from other floor types (e.g., timber or standard steel-concrete composite floors) and do not take into account specific features of CFS floors. Using the adjusted and then updated FE model, featuring semi-rigid connections led to markedly improved results. The first four measured and calculated CFS floor natural frequencies matched exactly and all relevant modal assurance criterion (MAC) values were above 90%. The introduction of flexible supports and more realistic modelling of the floor boundary conditions, as well as non-structural $fa{\c{c}}ade$ walls, proved to be crucial in the development of the new more successful modelling strategy. The process used to develop 10 identified and experimentally verified FE modelling parameters is based on published information and parameter adjustment resulting from FE model updating. This can be utilised for future design of similar lightweight steel floors in prefabricated buildings when checking their vibration serviceability, likely to be their governing design criterion.

Geometric and structural assessment and reverse engineering of a steel-framed building using 3D laser scanning

  • Arum Jang;Sanggi Jeong;Hunhee Cho;Donghwi Jung;Young K. Ju;Ji-sang Kim;Donghyuk Jung
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.595-603
    • /
    • 2024
  • In the construction industry, there has been a surge in the implementation of high-tech equipment in recent years. Various technologies are being considered as potential solutions for future construction projects. Building information modeling (BIM), which utilizes advanced equipment, is a promising solution among these technologies. The need for safety inspection has also increased with the aging structures. Nevertheless, traditional safety inspection technology falls short of meeting this demand as it heavily relies on the subjective opinions of workers. This inadequacy highlights the need for advancements in existing maintenance technology. Research on building safety inspection using 3D laser scanners has notably increased. Laser scanners that use light detection and ranging (LiDAR) can quickly and accurately acquire producing information, which can be realized through reverse engineering by modeling point cloud data. This study introduces an innovative evaluation system for building safety using a 3D laser scanner. The system was used to assess the safety of an existing three-story building by implementing a reverse engineering technique. The 3D digital data are obtained from the scanner to detect defects and deflections in and outside the building and to create an as-built BIM. Subsequently, the as-built structural model of the building was generated using the reverse engineering approach and used for structural analysis. The acquired information, including deformations and dimensions, is compared with the expected values to evaluate the effectiveness of the proposed technique.

A novel recursive stochastic subspace identification algorithm with its application in long-term structural health monitoring of office buildings

  • Wu, Wen-Hwa;Jhou, Jhe-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.459-474
    • /
    • 2019
  • This study develops a novel recursive algorithm to significantly enhance the computation efficiency of a recently proposed stochastic subspace identification (SSI) methodology based on an alternative stabilization diagram. Exemplified by the measurements taken from the two investigated office buildings, it is first demonstrated that merely one sixth of computation time and one fifth of computer memory are required with the new recursive algorithm. Such a progress would enable the realization of on-line and almost real-time monitoring for these two steel framed structures. This recursive SSI algorithm is further applied to analyze 20 months of monitoring data and comprehensively assess the environmental effects. It is certified that the root-mean-square (RMS) response can be utilized as an excellent index to represent most of the environmental effects and its variation strongly correlates with that of the modal frequency. More detailed examination by comparing the monthly correlation coefficient discloses that larger variations in modal frequency induced by greater RMS responses would typically lead to a higher correlation.

Comparison of Damping for Steel Tall Buildings by Half Power Bandwidth and Random Decrement Method (철골조 고층건물의 하프파워법과 RD법에 의한 감쇠율 비교)

  • Yoon, Sung-Won;Ju, Young Kyu;Shin, Sang Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.107-115
    • /
    • 2007
  • In this paper, the damping ratios of two methods, namely the half-power bandwidth method and random decrement method from the vibration measurement were examined. Ambient vibration tests were conducted on two steel-framed and one composite tall building ranging from 27 to 36 stories. The performance of the half-power bandwidth method was investigated using four sample sizes, such as 1024, 2048, 4096 and 8192. Damping by the half-power bandwidth method is slightly more overestimated than the random decrement method due to insufficient record length. Damping evaluation by the half-power bandwidth method was found to be enhanced when using the narrower bandwidth with long recorded data.

Development of construction method for underground buildings with MSRC diaphram wall and study on flexural performance of MSRC diaphram wall (강재주열벽을 적용한 지하건축물 가설공법의 개발 및 강재주열벽의 휨성능 연구)

  • Chung, Jee-Seung;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.937-957
    • /
    • 2017
  • Urban roads are not only congested with vehicles and pedestrians, but also have many pipelines buried to provide convenience for inhabitants. In addition, urban inhabitants live comfortably in buildings adjacent to the road for residence, business, commerce, rest and so on. Therefore, despite the high cost of land, urban underground buildings with high land use efficiency are constantly being built. Recently, the construction of underground buildings has caused social problems such as the collapse of surrounding roads and adjacent buildings. Institutional improvement is being actively carried out to improve this. In this study, a new type of MSRC diaphragm wall was developed and a study on the construction method of underground building was carried out. It is intended to secure the underground excavation safety of underground buildings in urban areas and effectively prevent land subsidence complaints. Also, a reasonable design method of MSRC diaphragm walls using the ultimate strength design method is presented through the flexural performance Experiment.

Seismic-resistant slim-floor beam-to-column joints: experimental and numerical investigations

  • Don, Rafaela;Ciutina, Adrian;Vulcu, Cristian;Stratan, Aurel
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.307-321
    • /
    • 2020
  • The slim-floor solution provides an efficient alternative to the classic slab-over-beam configuration due to architectural and structural benefits. Two deficiencies can be identified in the current state-of-art: (i) the technique is limited to nonseismic applications and (ii) the lack of information on moment-resisting slim-floor beam-to-column joints. In the seismic design of framed structures, continuous beam-to-column joints are required for plastic hinges to form at the ends of the beams. The present paper proposes a slim-floor technical solution capable of expanding the current application of slim-floor joints to seismic-resistant composite construction. The proposed solution relies on a moment-resisting connection with a thick end-plate and large-diameter bolts, which are used to fulfill the required strength and stiffness characteristics of continuous connections, while maintaining a reduced height of the configuration. Considering the proposed novel solution and the variety of parameters that could affect the behavior of the joint, experimental and numerical validations are compulsory. Consequently, the current paper presents the experimental and numerical investigation of two slim-floor beam-to-column joint assemblies. The results are discussed in terms of moment-rotation curves, available rotational capacity and failure modes. The study focuses on developing reliable slim-floor beam joints that are applicable to steel building frame structures located in seismic regions.

An Economic Analysis of Steel Framed Modular Housing: Compared with Case of Urban Type Living Housing of Wall-slab (강재 프레임 주택형 모듈러의 경제성 분석: 벽식구조인 도시생활형주택과의 사례비교를 통해)

  • Bang, Jong-Dae;Chun, Chu-Young;Park, Ji-Young;Kim, Jong-Yeob;Kim, Gap-Deug;Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.5 no.4
    • /
    • pp.305-314
    • /
    • 2014
  • The technology-intensive unit modular method of factory production method is attracting attention by the limit of the labor-intensive and field centered wet construction method. In recent years, the unit modular method has been applied to the construction of schoolhouse and BOQ(bachelor offices' quarters), dormitories, etc. But the modular method still is not used in housing construction by the lack of verification of resident performance and construction cost. Therefore, this study analyzed the economics of modular house to vitalize the constructed residential building by modular method and to develop the modular method. According to the study results, the construction cost of the modular house was analysed more about 6.2% expensive than that of the existing housing. However, if the construction duration of modular house is shortened or the productivity of modular house is increased, the construction cost of modular house will be similar to the that of the existing house.

Flexible Unit Floor Plan of a Modular House Considering the Production System (생산 시스템을 고려한 모듈러주택의 가변형 평면계획 연구)

  • Lee, Ji-Eun
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.67-78
    • /
    • 2021
  • After World War II, modular housing was developed as a means of quickly and efficiently meeting the housing supply demand. For the past 30 plus years, efforts have been made to improve modular housing in South Korea and to increase their competitiveness in the housing market. This study investigated modular houses based on a steel framed rahem structure which provides a flexible floor plan where walls are easily reconfigured to create rooms of various sizes and functions. Similar to the factory production methods used in the automotive industry, the modular housing industry can also benefit by standardizing such aspects as building components, manufacturing and construction methods, materials, process management, and floor plans. This study examined the feasibility of using a 3m × 3m module for developing various floor plans which are easy to produce and transport. Each 3m × 3m module can be configured to meet different living needs resulting in a complete home when multiple modules are connected. The module configurations can be varied to meet ground transportation and crane limitations. This study found that a 3m × 3m steel framed modular unit is a promising step towards providing residents with plans that meet their living preferences while improving and increasing the supply of modular houses.