• 제목/요약/키워드: steel-concrete structures

검색결과 2,360건 처리시간 0.025초

Bond behaviors of shape steel embedded in recycled aggregate concrete and recycled aggregate concrete filled in steel tubes

  • Chen, Zongping;Xu, Jinjun;Liang, Ying;Su, Yisheng
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.929-949
    • /
    • 2014
  • Thirty one push-out tests were carried out in order to investigate the bond behavior between shape steel, steel tube (named steels) and recycled aggregate concrete (RAC), including 11 steel reinforced recycled aggregate concrete (SRRAC) columns, 10 recycled aggregate concrete-filled circular steel tube (RACFCST) columns and 10 recycled aggregate concrete-filled square steel tube (RACFSST) columns. Eleven recycled coarse aggregate (RCA) replacement ratios (i.e., 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%) were considered for SRRAC specimens, while five RCA replacement ratios (i.e., 0%, 25%, 50%, 75% and 100%), concrete type and length-diameter ratio for recycled aggregate concrete-filled steel tube (RACFST) specimens were designed in this paper. Based on the test results, the influences of all variable parameters on the bond strength between steels and RAC were investigated. It was found that the load-slip curves at the loading end appeared the initial slip earlier than the curves at the free end. In addition, eight practical bond strength models were applied to make checking computations for all the specimens. The theoretical analytical model for interfacial bond shear transmission length in each type of steel-RAC composite columns was established through the mechanical derivation, which can be used to design and evaluate the performance of anchorage zones in steel-RAC composite structures.

Behaviour of high strength concrete-filled short steel tubes under sustained loading

  • Younas, Saad;Li, Dongxu;Hamed, Ehab;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제39권2호
    • /
    • pp.159-170
    • /
    • 2021
  • Concrete filled steel tubes (CFSTs) are extensively used in a variety of structures due to their structural and economic advantages over other types of structures. Considerable research has been conducted with regards to their short-term behaviour, and very limited studies have focused on their long-term behaviour. In this study, a series of tests were carried out on high strength squat (short) CFSTs and concrete cylinders under controlled conditions of temperature and humidity to better understand their time dependent behaviour. A number of parameters were investigated including the influence of steel and concrete bond, confinement, level of sustained load and sizes of specimens. The results revealed that creep strains increased by more than 40% if there was no bonding between steel tube and concrete core. As expected, creep and shrinkage of concrete inside a steel tube were significantly less than those developed in exposed concrete. At the end of a creep period of six months, all the specimens were tested to failure to observe the influence of sustained loads on the ultimate strength. It was found that creep does not have a major effect on the strength of short CFSTs in the specific experimental study conducted here, which was less than 2.5%.

압축력을 받는 강판-콘크리트 구조의 해석적 고찰 (Analytical Studies on the Steel Plate-Concrete Structures under Compressive Load)

  • 최병정;한홍수
    • 한국강구조학회 논문집
    • /
    • 제20권2호
    • /
    • pp.269-278
    • /
    • 2008
  • 본 연구의 주요 목적은 유한요소해석을 통해서 기존의 강판-콘크리트로 이루어진 구조의 최대압축강도와 좌굴거동을 포함한 압축좌굴특성을 파악하기 위함이다. 스터드 간격과 강판의 두께비를 변수로 하여 강판좌굴, 압축강도, 강성을 파악하고자 한다. 연구의 대상 시스템은 리브가 없는 강판-콘크리트 실험체와 리브가 있는 강판-콘크리트 실험체로 하였다. 유한요소 해석값과 이론식에 의한 이론값을 비교분석하여 해석값이 이론값과 얼마나 일치하는지 확인하고자 한다. 연구결과 강판-콘크리트구조의 좌굴거동은 스터드 사이에서 횡방향으로 나타남을 알 수 있었다. 강성은 리브가 있는 실험체가 리브가 없는 실험체보다 크게 나타났다. 한편, 유한요소 해석값이 "제안식"에 의한 값보다 약 20%정도 더 크며 JEAG 4618값과 거의 유사하게 나타났다.

Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers

  • Williams, E.M.;Graham, S.S.;Akers, S.A.;Reed, P.A.;Rushing, T.S.
    • Computers and Concrete
    • /
    • 제7권2호
    • /
    • pp.191-202
    • /
    • 2010
  • A laboratory investigation was conducted to characterize the constitutive property behavior of Cor-Tuf, an ultra-high-performance composite concrete. Mechanical property tests (hydrostatic compression, unconfined compression (UC), triaxial compression (TXC), unconfined direct pull (DP), uniaxial strain, and uniaxial-strain-load/constant-volumetric-strain tests) were performed on specimens prepared from concrete mixtures with and without steel fibers. From the UC and TXC test results, compression failure surfaces were developed for both sets of specimens. Both failure surfaces exhibited a continuous increase in maximum principal stress difference with increasing confining stress. The DP tests results determined the unconfined tensile strengths of the two mixtures. The tensile strength of each mixture was less than the generally assumed tensile strength for conventional strength concrete, which is 10 percent of the unconfined compressive strength. Both concretes behaved similarly, but Cor-Tuf with steel fibers exhibited slightly greater strength with increased confining pressure, and Cor-Tuf without steel fibers displayed slightly greater compressibility.

Corrosion of Steel Rebar in Concrete: A Review

  • Akib Jabed;Md Mahamud Hasan Tusher;Md. Shahidul Islam Shuvo;Alisan Imam
    • Corrosion Science and Technology
    • /
    • 제22권4호
    • /
    • pp.273-286
    • /
    • 2023
  • Rebar is embedded in concrete to create reinforced concrete (RC). Rebar carries most of the tensile stress and gives compressively loaded concrete fracture resistance. However, embedded steel corrosion is a significant cause of concern for RC composite structures worldwide. It is one of the biggest threats to concrete structures' longevity. Due to environmental factors, concrete decays and reinforced concrete buildings fail. The type and surface arrangement of the rebar, the cement used in the mortar, the dosing frequency of the concrete, its penetrability, gaps and cracks, humidity, and, most importantly, pollutants and aggressive species all affect rebar corrosion. Either carbonation or chlorides typically cause steel corrosion in concrete. Carbonation occurs when carbon dioxide in the atmosphere combines with calcium within the concrete. This indicates that the pH of the medium is falling, and the steel rebar is corroding. When chlorides pass through concrete to steel, corrosion rates skyrocket. Consideration must be given to concrete moisture. Owing to its excellent resistance, dry concrete has a low steel corrosion rate, whereas extremely wet concrete has a low rate owing to delayed O2 transfer to steel surfaces. This paper examines rebar corrosion causes and mechanisms and describes corrosion evaluation and mitigation methods.

염해를 받는 철근콘크리트 구조물의 철근부식시기 예측시스템 개발에 관한 연구 (A Study on the Development of Corrosion Prediction System of RC Structures due to the Chloride Contamination)

  • 김도겸;박승범
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권1호
    • /
    • pp.121-129
    • /
    • 2000
  • In general. service life of the sea-shore concrete structures is largely influenced by the corrosion of reinforcing steel due to the chloride contamination, and the penetration of chloride ions into concrete is governed by concrete condition state as a micro-structure. In this study, characteristics of chloride diffusion in concrete are analyzed in accordance with the mixing properties and durability of concrete, by considering the facts that micro-structure of concrete varies with the mixing properties and can indirectly be analyzed by using the durability test. In order to predict the service life of existing concrete structures, chloride diffusion equation for the concrete structures under various service conditions and the major parameters used in that equation are formulated as the mathematical models. Based on the results of chloride diffusion analysis in accordance with the mixing properties and durability of concrete and mathematical models formulated in this study, a prediction system is developed to predict the corrosion initiation of reinforcing steel in the sea-shore concrete structures.

  • PDF

Load-sharing ratio analysis of reinforced concrete filled tubular steel columns

  • Xiamuxi, Alifujiang;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • 제12권6호
    • /
    • pp.523-540
    • /
    • 2012
  • It was clear from the former researches on reinforced concrete filled tubular steel (RCFT) structures that RCFT structures have different performance than concrete filled steel tubular (CFT) structures. However, despite of that, load-sharing ratio of RCFT is evaluating by the formula and range of CFT given by JSCE. Therefore, the aim of this investigation is to study the load-sharing ratio of RCFT columns subjected to axial compressive load by performing numerical simulations of RCFT columns with the nonlinear finite element analysis (FEA) program - ADINA. To achieve this goal, firstly proper material constitutive models for concrete, steel tube and reinforcement are proposed. Then axial compression tests of concrete, RC, CFT, and RCFT columns are carried out to verify proposed material constitutive models. Finally, by the plenty of numerical analysis with small-sized and big-sized columns, load-sharing ratio of RCFT columns was studied, the evaluation formulas and range were proposed, application of the formula was demonstrated, and following conclusions were drawn: The FEA model introduced in this paper can be applied to nonlinear analysis of RCFT columns with reliable results; the load-sharing ratio evaluation formula and range of CFT should not be applied to RCFT; The lower limit for the range of load-sharing ratio of RCFT can be smaller than that of CFT; the proposed formulas for load-sharing ratio of RCFT have practical mean in design of RCFT columns.

Rate-sensitive analysis of framed structures part II: implementation and application to steel and R/C frames

  • Fang, Q.;Izzuddin, B.A.
    • Structural Engineering and Mechanics
    • /
    • 제5권3호
    • /
    • pp.239-256
    • /
    • 1997
  • The companion paper presents a new three-parameter model for the uniaxial rate-sensitive material response, which is based on a bilinear static stress-strain relationship with kinematic strain-hardening. This paper extends the proposed model to trilinear static stress-strain relationships for steel and concrete, and discusses the implementation of the new models within an incremental-iterative solution procedure. For steel, the three-parameter rate-function is employed with a trilinear static stress-strain relationship, which allows the utilisation of different levels of rate-sensitivity for the plastic plateau and strain-hardening ranges. For concrete, on the other hand, two trilinear stress-strain relationships are used for tension and compression, where rate-sensitivity is accounted for in the strain-softening range. Both models have been implemented within the nonlinear analysis program ADAPTIC, which is used herein to provide verification for the models, and to demonstrate their applicability to the rate-sensitive analysis of steel and reinforced concrete structures.

Prediction of bond strength between concrete and rebar under corrosion using ANN

  • Shirkhani, Amir;Davarnia, Daniel;Azar, Bahman Farahmand
    • Computers and Concrete
    • /
    • 제23권4호
    • /
    • pp.273-279
    • /
    • 2019
  • Corrosion of the rebar embedded in concrete has a fundamental role in the determination of life and durability of the concrete structures. Researches have demonstrated that artificial neural networks (ANNs) can effectively predict issues such as expected damage in concrete structures in marine environment caused by chloride penetration, the potential of steel embedded in concrete under the influence of chloride, the corrosion of the steel embedded in concrete and corrosion current density in steel reinforced concrete. In this study, data from different kind of concrete under the influence of chloride ion, are analyzed using the neural network and it is concluded that this method is able to predict the bond strength between the concrete and the steel reinforcement in mentioned condition with high reliability.

콘크리트강도 및 단면특성에 따른 콘크리트 충전강관(CFT) 기둥의 극한강도 분포에 관한 실험적 연구 (An Experimental Study on Distribution of Ultimate Strength of Concrete-Filled Steel Tube Columns according to Concrete Strength and Section Properties Ratio)

  • 장갑철;장경호
    • 한국공간구조학회논문집
    • /
    • 제8권5호
    • /
    • pp.59-65
    • /
    • 2008
  • 최근, 교량교각과 같은 기둥구조물의 사용성능을 향상시킴과 동시에 복잡한 도심지 내 효율적 공간활용을 위해 콘크리트 충전강관(CFT: concrete-filled steel tube)의 적용이 점차 증가하고 있다. 이러한 기둥구조물의 정확한 설계를 위해서는 재료 및 기하학적 특성에 따른 콘크리트 충전강관 기둥의 거동에 관한 실험적 연구가 요구된다. 이에 본 연구에서는 압축강도실험을 통하여 외경-두께비 (D/t) 및 강재-콘크리트 단면적비 (As/Ac)에 따른 콘크리트 충전강관 기둥의 극한강도 분포특성에 대해 명확히 파악하였다. 또한 콘크리트 배합강도에 따른 콘크리트 충전강관 기둥의 극한강도 분포특성을 실험을 통하여 명확히 파악하였다. 실험결과의 고찰을 통하여 압축하중을 받는 콘크리트 충전강관 기둥의 극한강도는 콘크리트 강도보다 강과의 단면특성에 주로 의존함을 알 수 있었다.

  • PDF