• 제목/요약/키워드: steel-CFRP

검색결과 319건 처리시간 0.025초

Analytical investigation of the cyclic behaviour of I-shaped steel beam with reinforced web using bonded CFRP

  • Mohabeddine, Anis I.;Eshaghi, Cyrus;Correia, Jose A.F.O.;Castro, Jose M.
    • Steel and Composite Structures
    • /
    • 제43권4호
    • /
    • pp.447-456
    • /
    • 2022
  • Recent experimental studies showed that deep steel I-shaped profiles classified as high ductility class sections in seismic design international codes exhibit low deformation capacity when subjected to cyclic loading. This paper presents an innovative retrofit solution to increase the rotation capacity of beams using bonded carbon fiber reinforced polymers (CFRP) patches validated with advanced finite element analysis. This investigation focuses on the flexural cyclic behaviour of I-shaped hot rolled steel deep section used as beams in moment-resisting frames (MRF) retrofitted with CFRP patches on the web. The main goal of this CFRP reinforcement is to increase the rotation capacity of the member without increasing the overstrength in order to avoid compromising the strong column-weak beam condition in MRF. A finite element model that simulates the cyclic plasticity behavior of the steel and the damage in the adhesive layer is developed. The damage is modelled using the cohesive zone modelling (CZM) technique that is able to capture the crack initiation and propagation. Details on the modelling techniques including the mesh sensitivity near the fracture zone are presented. The effectiveness of the retrofit solution depends strongly on the selection of the appropriate adhesive. Different adhesive types are investigated where the CZM parameters are calibrated from high fidelity fracture mechanics tests that are thoroughly validated in the literature. This includes a rigid adhesive commonly found in the construction industry and two tough adhesives used in the automotive industry. The results revealed that the CFRP patch can increase the rotation capacity of a steel member considerably when using tough adhesives.

모어써클을 활용한 탄소섬유 전단보강된 보의 전단거동 평가 (Evaluation of Shear Behavior of Beams Strengthened in Shear with Carbon Fiber Reinforced Polymer with Mohr's Circle)

  • 김윤곤
    • 콘크리트학회논문집
    • /
    • 제28권5호
    • /
    • pp.527-534
    • /
    • 2016
  • CFRP의 전단강도 기여분을 평가하고, 모어서클을 이용하여 전단거동 특성을 분석하기 위해 전단철근비가 서로 다른 보에 동일한 탄소섬유 전단보강 설계한 보 실험을 수행하였다. 취성특성을 가지는 CFRP의 전단기여분을 평가하기 위해서는 CFRP의 변형률을 평가해야 한다. 각 실험결과는 모어써클(Mohr's Circle)을 활용하여 전단변형률을 주인장변형률 및 균열각도의 변화와 연계하여 비교하였다. 전단철근비가 작은 경우 탄소섬유 자체의 전단강도 기여분 뿐만 아니라 탄소섬유에 의해 콘크리트 균열의 진전을 제어하여 균열에 의한 콘크리트의 성능저하를 최소화한다. 전단철근비가 큰 경우는 전단철근비가 작을 때 보다 탄소섬유 보강효과가 크지 않았다. 따라서 보강부재의 전단성능을 결정할 때 탄소섬유의 전단강도 기여분은 전단철근과의 상호작용을 고려할 수 있는 변형적합조건에 근거하여 평가되어야 한다.

Prediction of premature separation of bonded CFRP plates from strengthened steel beams using a fracture criterion

  • Lenwari, A.;Thepchatri, T.;Watanabe, E.
    • Structural Engineering and Mechanics
    • /
    • 제14권5호
    • /
    • pp.565-574
    • /
    • 2002
  • This paper presents a method for predicting premature separation of carbon fiber reinforced plastic (CFRP) plates from strengthened steel beams. The fracture criterion based on material-induced singularity is formulated in terms of a singular intensity factor. Static test on double strap joints was selected to provide the critical stress intensity factor in the criterion because good degree of accuracy and consistency of experimental data can be expected compared with the unsymmetrically loaded single lap joints. The debond/separation loads of steel beams with different CFRP lengths were measured and compared with those predicted from the criterion. Good agreement between the test results and the prediction was found.

CFRP 긴장재용 부착형 정착 장치의 강관 몰드 제원에 따른 정착 성능 실험 연구 (An Experimental Study on the Performance of Bond-Type Anchorage Systems with Various Dimensions of Steel Mold)

  • 정우태;박영환;박종섭
    • 콘크리트학회논문집
    • /
    • 제23권3호
    • /
    • pp.257-264
    • /
    • 2011
  • 이 연구는 부착형 정착 장치를 갖는 CFRP(carbon fiber reinforced polymer) 긴장재의 정착에 관한 실험 연구이다. 적절한 채움재를 도출하기 위해 예비 실험을 수행하였고, 에폭시 또는 콘크리트 모르타르와 같은 5종의 재료가 채움재로 사용되었다. 실험 결과 무수축 모르타르를 사용한 시편에서 최대 인장강도를 보이므로 이 연구에서는 CFRP 긴장재용 강관 몰드의 채움재로써 무수축 모르타르를 결정하였다. 예비 실험으로 도출된 채움재를 이용하여 강관 몰드의 적정 제원을 도출하기 위해 외경, 두께 및 길에 대한 추가 실험을 수행하였다. 이 실험을 통해 무수축 모르타르를 사용한 강관 몰드의 적정 제원이 도출되었고, 이러한 제원의 강관 몰드로 정착된 CFRP 긴장재는 안정적인 인장 성능을 보였다.

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion Between CFRP and A516Gr.55 Carbon Steel

  • Hur, Seung Young;Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제18권4호
    • /
    • pp.129-137
    • /
    • 2019
  • CFRP (Carbon Fiber Reinforced Plastics) is composed of carbon fiber and plastic resin, and is approximately 20 - 50% lighter than metallic materials. CFRP has a low density, higher specific stiffness, specific strength, and high corrosion resistance. Because of these excellent properties, which meet various regulation conditions needed in the industrial fields, CFRP has been widely used in many industries including aviation and ship building. However, CFRP reveals water absorption in water immersion or high humidity environments, and water absorption occurs in an epoxy not carbon fiber, and can be facilitated by higher temperature. Since these properties can induce volume expansion inside CFRP and change the internal stress state and degrade the chemical bond between the fiber and the matrix, the mechanical properties including bond strength may be lowered. This study focused on the effects of NaCl concentration (0.01 - 1% NaCl) and solution temperature ($30-75^{\circ}C$) on the galvanic corrosion between CFRP and A516Gr.55 carbon steel. When NaCl concentration increases 10 times, corrosion rate of a specimen was not affected, but that of galvanic coupled carbon steel increased by 46.9% average. However, when solution temperature increases $10^{\circ}C$, average corrosion rate increased approximately 22%, regardless of single or galvanic coupled specimen.

CFRP 적층판으로 보강된 철근콘크리트보의 신뢰성평가 (Reliability Assessment of Reinforced Concrete Beams Strengthened by CFRP Laminates)

  • 조효남;최영민
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.160-166
    • /
    • 1994
  • In general, the problems of strengthening and repairing of deteriorated or damaged reinforced concrete members are usually worked out in situ by externally bounding steel plates using epoxy resins, which has been recognized to be one of effective and convenient methods. But the disadvantages of strengthening/repairing concrete members with externally bonded steel plates include ; (a) deterioration of the bond at the steel-concrete interface caused by the corrosion of steel ; (b) difficulty in manipulating the plate at the construction site ; (c) improper formation of joints, due to the limited delivery lengths of the steel plates ; and etc. Therefore these difficulties eventually have led to the concept of replacing the steel plates by fiber-reinforced composite sheets which are characterized by their light weight, extremely high stiffness, excellent fatigue properties, and outstanding corrosion resistance. In the paper, for the reliability assessment of reinforced concrete beams externally strengthened by carbon fiber plastic(CFRP) laminates, an attempt is made to suggest a limit state model based on the strain compatibility method and the concept of fracture mechanics. And the reliability of the proposed models is evaluated by using the AFOSM method. The load carrying capacity of the deteriorated and/or damaged RC beams is considerably increased. Thus, it may be stated that the post-strengthening of concrete beams with externally bonded CFRP materials may be one of very effective way of increasing the load carrying capacity and stiffeness characteristics of existing structures.

  • PDF

Experimental and numerical study about seismic retrofitting of corrosion-damaged reinforced concrete columns of bridge using combination of FRP wrapping and steel profiles

  • Afshin, Hassan;Shirazi, Mohammad R. Nouri;Abedi, Karim
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.231-251
    • /
    • 2019
  • In the present study, a numerical and experimental investigation has been carried out on the seismic behavior of RC columns of a bridge which damaged under corrosive environments and retrofitted by various techniques including combined application of CFRP sheets and steel profiles. A novel hybrid retrofitting procedure, including the application of inner steel profiles and outer peripheral CFRP sheets, has been proposed for strengthening purpose. Seven large-scale RC columns of a Girder Bridge have been tested in the laboratory under the influence of simultaneous application of constant axial load and the lateral cyclic displacements. Having verified the finite element modeling, using ABAQUS software, the effects of important parameters such as the corrosion percentage of steel rebars and the number of CFRP layers have been evaluated. Based on the results, retrofitting of RC columns of the bridge with the proposed technique was effective in improving some measures of structural performance such as lateral strength degradation and higher energy absorption capability. However, the displacement ductility was not considerably improved whereas the elastic stiffness of the specimens has been increased.

외부 CFRP 프리스트레싱으로 보강된 PSC 보에서 CFRP 텐던의 극한응력 (Ultimate Stress of Prestressing CFRP Tendons in PSC Beams Strengthened by External CFRP Prestressing)

  • 박상렬;김창훈;홍성룡
    • 콘크리트학회논문집
    • /
    • 제19권6호
    • /
    • pp.735-744
    • /
    • 2007
  • 본 연구는 CFRP 긴장재를 이용하여 외부 프리스트레싱으로 보강된 프리스트레스트 콘크리트 보에 관한 문헌 연구와 프리스트레싱 CFRP의 극한응력 예측식의 개발, 극한응력에 영향을 미치는 변수들에 대한 실험 등이다. 새로운 통합 예측식 개발을 위하여 비부착 프리스트레싱 CFRP의 극한응력에 대한 ACI 시방서 설계식을 확장하고 분석하였다. 본 논문에서는 외부 CFRP 긴장재의 극한응력에 대한 새로운 합리적 예측식을 제안하고 있는데, 프리스트레싱 긴장재와 중립축의 깊이비의 함수로서 표현하여 내부 PS 강재의 영향을 고려하고 있다. 실험 연구에서는 프리스트레싱 CFRP의 극한응력에 가장 큰 영향을 미치는 실험 변수를 가지고 외부 프리스트레싱으로 보강된 PSC 보를 제작하여 실험하였다. 실험 연구에서 채택한 영향인자들은 내부 PS 강재비, 외부 PS 긴장재비, 지간과 PS 강재 깊이비 등이다. 실험 결과는 분석되어 외부 프리스트레싱 CFRP의 극한응력에 대한 제안된 예측식의 합리성과 적용성을 확인하였다.

Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures

  • Ahmed, Alim Al Ayub;Kharnoob, Majid M.;Akhmadeev, Ravil;Sevbitov, Andrei;Jalil, Abduladheem Turki;Kadhim, Mustafa M.;Hansh, Zahra J.;Mustafa, Yasser Fakri;Akhmadullina, Irina
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.551-561
    • /
    • 2022
  • In this paper, the effect of fire conditions according to ISO 834 standard on the behavior of carbon fibre-reinforced plastic (CFRP) reinforced steel beams coated with gypsum-based mortar has been investigated numerically. To study the efficiency of these beams, 3D coupled temperature-displacement finite element analyzes have been conducted. Mechanical and thermal characteristics of three different parts of composite beams, i.e., steel, CFRP plate, and fireproof coating, were considered as a function of temperature. The interaction between steel and CFRP plate has been simulated employing the adhesion model. The effect of temperature, CFRP plate reinforcement, and the fireproof coating thickness on the deformation of the beams have been analyzed. The results showed that within the first 120 min of fire exposure, increasing the thickness of the fireproof coating from 1 mm to 10 mm reduced the maximum temperature of the outer surface of the steel beam from 380℃ to 270℃. This increase in the thickness of the fireproof layer decreased the rate of growth in the temperature of the steel beam by approximately 30%. Besides excellent thermal resistance and gypsum-based mortar, the studied fireproof coating method could provide better fire resistance for steel structures and thus can be applied to building materials.

R/C 라멘교에 적용된 CFRP의 보강효과 (Strengthening Effect of CFRP on the R/C Rahmen Bridge)

  • 심종성;정영수;윤선원;김규선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.328-333
    • /
    • 1996
  • Concrete can be defective for several reasons, including an inadequate design, material selection of workmanship, failure to appreciate the hazards associated with prevailing enviromental conditions. Concrete can also deteriorate or be damaged in use. Thus, it is necessary to evaluate the safety of existing concrete strucutres. On the basis of these reasons, they must be performed for repair or rehabilitation. Presently, strengthening methods of R/C structure used in Korea, are an enlargement of concrete member, strengthening with steel plate or CFRP on the R/C structure. It has been widely estabilished that strengthening effect of CFRP is superior to steel plate in terms of it's lighter unit weight and higher tensile strength. But there are no construction results of CFRP on the civil R/C structure in Korea. The strengthening design technique with CFRP, it's const겨ction, and it's strengthening effect for deteriorated R/C rahmen bridge is introduced in this paper.

  • PDF