• Title/Summary/Keyword: steel wire

Search Result 612, Processing Time 0.029 seconds

THE PHYSICAL PROPERTIES OF TIN ION-FLAYED CO-CR(ELGILOY) ORTHODONTIC WIRES (TiN 피막처리된 Co-Cr계 교정용 선재의 물성)

  • KIM, Jung-Min;KWON, Oh-Won;KIM, Kyo-Han
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.371-377
    • /
    • 1998
  • To estimate the possibility of clinical application of TiN ion-Plated Elgiloy(Co-Cr wire), measurements of tensile strength and hardness were made on the four tempers on each of the manufactured Elgiloy, the (heat-treated) Elgiloy for 30 minutes at $250^{\circ}C$ and the TiN ion-plated Elgiloy. For comparison, the tensile strength and hardness of Stainless Steel wires were also measured. The following are the results of the study: $\cdot$In the 4 tempers, tensile strength was the greatest in the TiN ion-plated group, followed by the heat-treated Elgiloy group and the manufactured Elgiloy group, but no statistical difference was noticed between heat-treated and manufactured Elgiloy groups(p>0.05). $\cdot$In each temper, tensile strength of ion-plated Elgiloy increased about $10kgf/mm^2$ in comparison with the values of the manufactured Elgiloy $\cdot$In yellow, green and red tempers except the blue, hardness was the greatest in ion-plated group. In the blue temper, there was no statistical difference between heat-treated and manufactured Elgiloy groups(p>0.05). $\cdot$In each temper, hardness of ion-plated Elgiloy increased about 50-90VHN in comparison with the values of the manufactured Elgiloy. $\cdot$The tensile strength of Stainless Steel wire was similar to that of the red temper of manufactured Elgiloy and the green temper of ion-plated Elgiloy.

  • PDF

THE COMPARATIVE STUDY OF THE EFFECT OF THE SEMI RIGID AND RIGID FIXATIONS OF THE GROWTH OF THE CRANIOFACIAL SKELETON (반강성(半剛性) 및 강성고정(剛性固定)이 두개안면골(頭蓋顔面骨)의 성장(成長)에 미치는 영향(影響)에 관한 연구(硏究))

  • Lee, Sang-Chull;Kim, Yeo-Gab
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.15 no.3
    • /
    • pp.157-170
    • /
    • 1993
  • To prove the effct of semi-rigid fixation which utilize wire and rigid fixation which utilizes miniplate toward cranio-facial growth and development of growing children for teenagers, 28 rabbits-6 weeks, about 1.5kg-were experimented. They were classified three groups the semi-rigid group was 12 rabbits which were fixed with 26 gauge stainless steel wire to cross a fronto-nasal suture, the rigid group was the other 12 rabbits which were fixed with miniplate and screw, the control group was 4 rabbits which were get rid of only periosteum. The sample of fronto-nasal of rabbits which were sacrified after 2 weeks, 4 weeks, 8 weeks, and 12 weeks of the operation were investigated and made a comparative study with the light microscops. 1. At the control group, the central part of bony suture was connected with colagen bundle, the osteoblastic layer was investigated at the bony ending, new bone which covered the inside and outside faces of the bone suture was formed between periosteum. 2. Two weeks later from the experiment, ran slightly irregularly the collagen bundle which connects both bony endings of the rigid group. 3. Four weeks later from the experiment, collagen bundle of bone surface were arranged parally a little and comparing to the semi-rigid group, newly formed woven bone of surface of the adjacent bone was made obviously a little. 4. Eight weeks later from the experiment, collagen bundle which is located between both bony ending become close. Both the semi-rigid group and the rigid group showed significant formation of new bone at the periosteum and the bone surface. 12 weeks later from the experiment, both the semi-rigid group and the rigid group showed the regular running in the collagen bundle and smooth, dense periosteum. Then they assumed a similar aspect of the control group. I think that it does not give the influence to the cranio-facial growth of children or teenager to utilize a rigid fixation for a short period. Because as the time goes on, the surface of the bone suture was recovered and adjacent bone surface of the miniplate fixation showed compensatory growth, although both the semi-rigid group which utilized wire and rigid group which utilized a miniplate brought about the change of the area of the bone suture at the early period.

  • PDF

Frictional resistance of different ceramic brackets and their relationship to the second order angulation between bracket slot and wire (세라믹 브라켓의 종류 및 브라켓 슬롯과 와이어 각도에 따른 마찰 저항 차이)

  • Choi, Yoon-Jeong;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.207-217
    • /
    • 2006
  • Although ceramic brackets have been used widely for improved esthetics during treatment, ceramic brackets have some inherent problems; brittleness, attrition of the opposing teeth and high frictional resistance. This study was performed to understand the frictional resistance of the ceramic brackets, as well as to be a helpful reference for finding the solutions to the problem of frictional resistance. Three different kinds of brackets were used; metal bracket, polycrystalline ceramic brackets with a metal slot to reduce the high frictional resistance and monocrystalline ceramic brackets. The brackets were tested with a $.019{\times}.025$ stainless steel wire with a second order angulation of $0^{\circ}\;and\;10^{\circ}$, and the static and kinetic frictional forces were measured on the universal testing machine. The results of this study showed that the ceramic brackets, especially the monocrystalline ceramic bracket without a metal slot, generated higher frictional resistance than the metal bracket, and the frictional resistance was increased as the angulation between the bracket slot and the wire increased. Therefore, the development of the ceramic bracket with reduced frictional resistance and the prevention of excessive crown tipping during orthodontic treatment will lead to the simultaneous attainment of more efficient and improved esthetic treatment goals.

3-dimensional finite element analysis of maxillary molar distalization using R-jig with TADs (TADs와 R-jig를 이용한 상악 구치 원심 이동에 관한 3차원 유한요소 분석)

  • Tark, Myung-Hyun;Lee, Keunyoung;Cho, Jin-Woo;Chee, Young-Deok;Cho, Jin-Hyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.4
    • /
    • pp.265-277
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate the differences of displacement pattern depending on type of sliding jig and application method during maxillary molar distalization with temporary anchorage devices (TADs). Materials and Methods: Maxilla with normal tooth size and arch shape was selected to create a 3-dimensional finite element model, which included the bracket, orthodontic main archwire, removable sliding jig (R-jig). The orthodontic mini-implant anchorage was set 8 mm superiorly from main archwire, buccally between the second premolar and first molar. The base experimental design was Condition 1, which was composed $0.019{\times}0.025$ inch stainless steel (SS) of wire size of R-jig, 200 gm force, un-tied state. And the other designs varied to wire size of R-jig, magnitude of force. The results are as follows. Results: As the wire size of R-jig was increased, the deformation of R-jig was decreased. However, the displacement of second molar wasn't different each other. As the force to second molar was increased, the more displacement of second molar was observed, and the more distal tipping movement, vetical displacement was observed. Conclusion: R-jig can get distal teeth movement in orthodontic treatment without side effects.

Magnetic Flux Leakage based Damage Quantification of Steel Bar (누설자속기법을 이용한 강봉의 손상 정량화 기법)

  • Park, Jooyoung;Kim, Ju-Won;Yu, Byoungjoon;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • In this paper, a magnetic flux leakage(MFL) based steel bar damage detection was first researched to quantify the signals from damages on the wire rope. Though many researches inspecting damages using a MFL method was proceeded until the present, the researches are at the level that diagnose whether damages are or not. This has limitation to take measures in accordance with the damage level. Thus, a MFL inspection system was modeled using a finite element analysis(FEM) program dealing with electromagnetism problems, and a steel bar specimen was adopted as a ferromagnetic object. Then, an experimental study was also carried out to verify the simulation results with a steel bar which has same damage conditions as the simulation. The MFL signals was nearly not affected by the increase of the inspection velocity, and the magnitudes of the signals are not identical according to the change of the defect width even the defects have same depth. On the basis of the analysis, the signal properties from the damages were extracted to classify the type of damages, and it could be confirmed that classification of damages using extracted signal properties is feasible.

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.

Pilot Study on the Shear Strengthening Effect of Concrete Members Reinforced by Kagome Truss (카고메 트러스로 보강한 콘크리트 부재의 전단 보강효과에 관한 기초 연구)

  • Kim, Woo;Kang, Ki-Ju;Lee, Gi-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.237-244
    • /
    • 2012
  • There is mounting recognition among concrete researchers that fiber reinforcement makes up for the inherent weakness in resisting tensile force of structural concrete. In practice of application of the fiber to concrete, however, several problems still remain to solve for assuring a uniform mix quality. The Kagome truss that is widely used in mechanical engineering field seems to be a good replacement for the steel fiber. This paper presents the test results of a pilot study for the concrete members reinforced by Kagome truss which is a periodic cellular metal of wire-woven. Three types of Kagome truss bulk were prefabricated and filled with normal concrete to make small-scaled test beams. The beams reinforced by a normal steel stirrups were also tested up to failure to compare the behavioral results. From the results obtained, it is appeared that comparing with beams reinforced by normal stirrups, the beams reinforced by Kagome truss showed better performance in load carrying capacity as well as ductility. Therefore, the Kagome truss is proved to be a good web shear reinforcing material.

A Study of Characteristics on the Dissimilar Metals (ASTM Type 316L - Carbon Steel : ASTM A516-70) Welds Made with FCA Multiple Layer Welding (스테인리스강(ASTM Type 316L)과 탄소강(ASTM A516 Gr.70) 이종금속의 FCA 다층 용접부 특성에 대한 연구)

  • Kim, Se Cheol;Hyun, Jun Hyeok;Shin, Tae Woo;Koh, Jin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.69-76
    • /
    • 2016
  • Characteristics of dissimilar metal welds between ASTM Type 316L and carbon steel ASTM A516 Gr.70 made with FCAW were evaluated in terms of microstructure, ferrite content, EDS analysis, hardness, tensile strength, impact toughness and corrosion resistance. Three heat inputs of 10.4, 16.9, 23.4kJ/cm were employed to make joints of dissimilar metals with E309LMoT1-1 wire. Microstructure of dissimilar weld metals consisted of mostly vermicular type of ${\delta}$-ferrite and some lathy type of ${\delta}$-ferrite, and ${\delta}$-ferrite was transformed into globular type in reheated zone. In all conditions, weld metals were solidified on FA solidification mode. Based on the EDS analysis of weld metals, All Creq/Nieq values were in the range of FA solidification mode, and it was decreased with increasing heat inputs whereas it was increased with increasing layers. The amount of ${\delta}$-ferrite was decreased with increasing heat input due to the difference of cooling rate, and it was increased with increasing layers. Accordingly, hardness and tensile strength of dissimilar metals weld joints was decreased with increasing heat input while impact energy was increased with increasing heat input. Corrosion test of dissimilar metals weld joints showed that weight gain rate of heat input 10.4kJ/cm was the greatest, and that of three heat inputs became constant after certain time.

Development of 2W-Level Wireless Powered Energy Harvesting Receiver using 60Hz power line in Electricity Cable Tunnel (전력구 내 지중선을 이용한 2W급 상용주파수 무선전력 수신장치 개발)

  • Jang, Gi-Chan;Choi, Bo-Hwan;Rim, Chun-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.296-301
    • /
    • 2016
  • Using high magnetic flux from a 60 Hz high-current cable, a 2 W wireless-powered energy harvesting receiver for sensor operation, internet of things (IoT) devices, and LED lights inside electrical cable tunnels is proposed. The proposed receiver comprises a copper coil with a high number of turns, a ring-shaped ferromagnetic core, a capacitor for compensating for the impedance of the coil in series, and a rectifier with various types of loads, such as sensors, IoT devices, and LEDs. To achieve safe and easy installation around the power cable, the proposed ring-shaped receiver is designed to easily open or close using a clothespin-shaped handle, which is made of highly-insulated plastic. Laminated silicon steel plates are assembled and used as the core because of their mechanical robustness and high saturation flux density characteristic, in which the thickness of each isolated plate is 0.3 mm. The series-connected resonant capacitor, which is appropriate for low-voltage applications, is used together with the proposed receiver coil. The concept of the figure of merit, which is the product weight and cost of both the silicon steel plate and the copper wire, is used for an optimized design; therefore, the weight of the fabricated receiver and the price of raw material is 750 gf and USD $2 each, respectively. The 2.2 W powering capability of the fabricated receiver was experimentally verified with a power cable current of $100A_{rms}$ at 60Hz.

A Study on the Total, Particle Size-Selective Mass Concentration of Airborne Manganese, and Blood Manganese Concentration of Welders in a Shipbuilding Yard (조선업 용접작업자의 공기 중 총 망간 및 입경별 망간 농도와 혈중 망간농도에 관한 연구)

  • Park, Jong Su;Kim, Pan Gyi;Jeong, Jee Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.4
    • /
    • pp.472-481
    • /
    • 2015
  • Objectives: Welding is a major task in shipbuilding yards that generates welding fumes. A significant amount of welding in shipbuilding yards is done on steel. Inevitably, manganese is present in the base metals being joined and the filler wire being used and, consequently, in the fumes to which workers are exposed. The objective of this work was to characterize manganese exposure associated with work area, total and particle size-selective mass concentration, and compare the mass concentrations obtained using a three-piece cassette sampler, size-selective impactor sampler and blood manganese concentrations. Materials: All samples were collected from the main work areas at one shipbuilding yard. We used a three piece cassette sampler and the eight stage cascade impactor sampler for the airborne manganese mass concentration of total and all size fractions, respectively. In addition, we used the results of health examination of workers sampled for airborne manganese. Results: The oder of high concentration of airborne manganese in shipbuilding processes was as follows; block assembly, block erection, outfitting installation, steel cutting, and outfitting preparation. The percentages of samples that exceeded the OES of the ministry of employment and labor by the cassette sampling method was 12.5%, however 59.1% of sampled workers by the impactor sampling method exceeded the TLV of the ACGIH. Conclusions: Even though the manganese concentrations in blood of workers exposed to higher airborne manganese concentration were higher than among those exposed to lower concentrations, there was no difference in blood manganese concentrations among work duration. The data analyzed here by characterizing size-selective mass concentrations indicates that the inhaled manganese of welders in shipbuilding yards could be mostly manganese-containing respirable particle sizes.