• Title/Summary/Keyword: steel tubes

Search Result 425, Processing Time 0.025 seconds

An Experimental Study for the Compression Strength of Hybrid CFFT Pile (FRP 콘크리트 합성말뚝의 압축강도에 대한 실험적 연구)

  • Choi, Jin-Woo;Park, Joon-Seok;Nam, Jung-Hoon;An, Dong-Jun;Kang, In-Kyu;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.30-39
    • /
    • 2011
  • In this paper, we persent the results of on experimental investigations pertaining to the structural behavior of new type of concrete filled fiber reinforced plastic circular tubes (i.e., hybrid CFFT, HCFFT) which are suggested in order to mitigate the problems associated with the concrete filled steel-concrete composite tube (CFT) and the concrete filled fiber reinforced plastic tube (CFFT). It is found that when the HCFFT is used in the construction of pile foundation the HCFFT pile can transfer axial as well as flexural loads from the superstructure to the underground effectively in comparison with CFT and CFFT piles.

Column Shortening Prediction of Concrete Filled Tubes using Monte Carlo Method (몬테카를로 기법을 이용한 CFT 기둥축소량의 예측)

  • Jang, Sung-Woo;Song, Hwa-Cheol;Sho, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.75-84
    • /
    • 2010
  • According to the available study and experimental data about the long term behavior of CFT(Concrete Filled Tube) columns, the creep and of concrete in CFT columns are smaller than those of RC columns because of the confinement effect of outer steel columns. In this study, the uncertainties associated with assumed values for concrete properties such as strength, creep coefficients, and service load have been considered and analyzed for the prediction of time-dependent column shortening of CFT column. The CFT column shortening analysis using Monte Carlo method is proposed and an of a 37 story tall building with CFT columns is studied for illustration. According to the results obtained by the probability analysis with multi parameters, the effect of variation coefficient for 3 parameters is investigated considering confidence interval.

  • PDF

An Experimental Study on the Convective Boiling in Inclined Tubes (경사진 원형관내에서의 강제대류비등 열전달에 대한 실험적 연구)

  • 이홍욱;이준식;박군철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.674-681
    • /
    • 2001
  • An experiment is conducted to investigate the effect of the inclination angle on convective boiling heat transfer of a uniformly heated tube. The test section used is a stainless steel tube with10.7mm in inner diameter. The hating length is 3m and is heated directly by an AC current. The test fluid is R-113. Experiment are carried out with mass flow rates of 300, 500 and $700\;kg/m^{2}s$, and heat fluxes varying from 5 to 65 kW/$m^2$. The inclination angles of the tube are $0^{\circ},\;5^{\circ},\;11^{\circ}\;and\;25^{\circ}$. the circumferential temperature variation at low quality region and the location of dryout at high quality region are mainly observed. Circumferential anisothermality occurring at low mass flow rate and low quality conditions is gradually reduced with the increase in the inclination angle and finally disappears at the inclination angle of $25^{\circ}$. Critical quality where dryout is initiated is seriously influenced by the inclination angle. Wall temperature after critical quality is also affected by the inclination angle.

  • PDF

Design of Precast Circular Piers with Prestressing Bars (강봉으로 긴장한 프리캐스트 원형교각의 설계)

  • Shim, Chang-Su;Chung, Chul-Hun;Yoon, Jae-Young;Kim, Cheol-Hwan;Lee, Yong-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.121-124
    • /
    • 2008
  • Fast construction of bridge substructures is a new trend of bridge design. A precast pier system with bonded prestressing bars was proposed. In this paper, quasi-static tests on precast prestressed piers were conducted to evaluate the seismic behavior of the precast piers with bonded prestressing bars. In order to strengthen the shear strength of the joints between column segments, steel tubes filled with mortar were used. Displacement ductility and energy dissipation capacity of the precast piers were evaluated. The suggested precast pier system showed better seismic performance than the required ductility. Based on the research results, an example bridge pier for light-railway lines was designed and design considerations were discussed.

  • PDF

Measuring Pattern Recognition from Decision Tree and Geometric Data Analysis of Industrial CR Images (산업용 CR영상의 기하학적 데이터 분석과 의사결정나무에 의한 측정 패턴인식)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.56-62
    • /
    • 2008
  • This paper proposes the use of decision tree classification for the measuring pattern recognition from industrial Computed Radiography(CR) images used in nondestructive evaluation(NDE) of steel-tubes. It appears that NDE problems are naturally desired to have machine learning techniques identify patterns and their classification. The attributes of decision tree are taken from NDE test procedure. Geometric features, such as radiative angle, gradient and distance, are estimated from the analysis of input image data. These factors are used to make it easy and accurate to classify an input object to one of the pre-specified classes on decision tree. This algerian is to simplify the characterization of NDE results and to facilitate the determination of features. The experimental results verify the usefulness of proposed algorithm.

On-Site Corrosion Behavior of Water-Treated Boiler Tube Steel

  • Seo, Junghwa;Choi, Mihwa;He, Yinsheng;Yang, Seok-Ran;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.177-182
    • /
    • 2015
  • The boiler tubes of X20CrMoV12.1 used in fossil-fired power plants were obtained and analyzed for the effect of water treatment on the steam corrosion-induced oxide scale in an effort to better understand the oxide formation mechanism, as well as pertinent method of maintenance and lifetime extension. The specimens were analyzed using various microscopy and microanalysis techniques, with focuses on the effect of water treatment on the characters of scale. X-ray diffraction analysis showed that the scales of specimens were composed of hematite ($Fe_2O_3$), magnetite ($Fe_3O_4$), and chromite ($FeCr_2O_4$). Electron backscatter diffraction analysis showed that the oxides were present in the following order on the matrix: outer $Fe_2O_3$, intermediate $Fe_3O_4$, and inner $FeCr_2O_4$. After all volatile treatment or oxygenated treatment, a dense protective $Fe_2O_3$ layer was formed on the $Fe_3O_4$ layer of the specimen, retarding further progression of corrosion.

Finite Element Analysis of NiTi Alloy Tubes with the Superelastic Behavior (초탄성 거동을 고려한 NiTi 합금 튜브의 변형해석)

  • Kang, Woo-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.100-106
    • /
    • 2006
  • NiTi alloy known as its shape memory effect also has superelastic characteristic, which makes it possible to be elastic under large deformation. Since the tensile strength of the alloy is very high and density is low compared to carbon steel, it can be applied to lightweight structural design. In order to design structures with shape memory alloy, finite element analysis is used and a constitutive algorithm based on Aurrichio's model is added to LS-DYNA as a user subroutine. Explicit time integration and shell element formulation are used to simulate thin-walled structures. The algorithm uses Drucker-Prager type loading condition to calculate martensite volume fraction during the transformation. The implemented algorithm is verified in uni-axial loading condition and martensite phase transformation can be detected well with the algorithm. In this study, as a energy absorbing structure, thin-walled tube is modeled with finite elements and the deformation behavior is studied. Simulation results has shown that the martensite transformation was generated in loading condition. After plastic deformation reached, the load decreases linearly without reverse martensite transformation.

A Study on the Development of High Deposition Automatic Vertical Welding of Erection Stage in Shipbuilding (조선 탑재용접용 대입열 수직자동용접법의 개발에 관한 연구)

  • Park, Ju-Yong;Choe, Woo-Hyeon
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.66-73
    • /
    • 2008
  • Welding work in pre-erection or erection stage of shipbuilding construction to be carried out in flat and vertical upward position mostly and Electrogas welding(EGW) is actively applied especially for vertical butt joint of thicker steel plate recently. In this study considered how to develope and improve mechanical properties of weld metal and HAZ in high heat input welding processes such as EGW and Electroslag welding(ESW) with its welding equipment in order to extend the application range to the longitudinal members and hatch coaming parts of container ship. Some components of welding system and parameters were modified to get the faster travel speed and reduce weld heat input, and also by adding additional filler rods or tubes increase the amount of deposited weld metal. With the test get some good date can apply to actual fabrication work and recommend items to manufacture welding materials make better. Above all things it's a fruition that to prepare the possibility of application of ESW to shipbuilding construction which fill up the gap of stoppage days of more than 20 years.

Thermal Performance of a Spirally Coiled Finned Tube Heat Exchanger Under Wet-Surface Conditions

  • Wongwises Somchai;Naphon Paisarn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.212-226
    • /
    • 2006
  • This paper is a continuation of the authors' previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data.

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.