• Title/Summary/Keyword: steel tubes

Search Result 419, Processing Time 0.025 seconds

Assessment of Confining Effect of Steel and GFRP Jackets for Concrete (콘크리트 보강강판 및 GFRP 튜브의 구속효과 분석 및 평가)

  • Choi, Eunsoo;An, Dong Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.385-392
    • /
    • 2009
  • In this study, the confining effect of the proposed steel jackets and GFRP tubes for concrete was investigated. The new steel jacket differs from the existing steel jacket in terms of installation technique and behavior. Thus, it is necessary to assess its confining effect on concrete. Moreover, the method was compared to GFRP tubes to investigate its strong and weak points. The confining effect of the proposed steel jacket was shown to correspond with that presented in the previous researches. The GFRP jacketing method, however, does not show any confining effect in some cases, according to the tube thickness and concrete peak strength as such, the previous assessment equation cannot be used in such cases. Thus, in this study, a new method of assessing the peak strength of confined concrete was suggested, and the minimum thickness was determined to show the confining effect. Lastly, the ultimate strains of concrete that had been confined through the two methods were compared to assess their ductile behavior.

An Experimental Study on the Stress-Strain Relation of Concrete-Filled Steel Tubes (콘크리트충전 강관기둥의 응력-변형도 관계에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.210-214
    • /
    • 1995
  • Research on concrete-filled steel columns has been conducted. It is also well known that the load and deformation capacity of concrete-filled steel columns are considerable larger than those of widely used reinforced concrete columns and steel encased concrete columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. columns because the concrete core in the steel is confined laterally by the steel. But, most of these works focused on columns with strength enhancement by the confinement effect, so that no local buckling prevented by the concrete. This paper, therefore, presents on the stress-strain relation of a concrete filled rectangular steel tube under axial compression. As the results, the axial load verse average axial strain relationship of concrete-filled rectangular steel columns were very stable. The small B/t ratios in concrete-filled rectangular steel columns aren't affected prevention of local buckling but strength enhancement by confinement effect.

  • PDF

An Experimental Study on Deep Collapse of Steel Tubes under Pure Bending (순수 굽힘 시험기를 이용한 연강 사각관의 굽힘 붕괴에 관한 실험적 연구)

  • KiM, C.S.;Chung, T.E.;Kang, S.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.37-44
    • /
    • 1997
  • In this paper the bending collapse characteristics of square and rectangular steel tubes were studied with the pure bending test machine which apply pure bending moment without imposing shear and tensile forces. Under pure bending moment, delayed buckling modes occur and depend on test length and shape of section. For delayed mode, the endrgy of bending moment is absorbed by strain hardening energy. The pre- dictions of maximum moment and moment-rotation angle curve from those concepts are in good agreement with experimental observations.

  • PDF

An Experimental Study on the High-Strength Concrete Shear Wall using Rectangular Steel Tubes (각형강관을 사용한 고강도 콘크리트 전단벽체에 대한 실험적 연구)

  • 최기봉;조순호;김명준;오종환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.460-467
    • /
    • 1997
  • Compared to normal-strength concrete, high-strength concrete has the lower lateral expansion capacity caused by the higher elastic modulus and the lower internal crack characteristic. Therefore, the effect of the lateral confining action of hoops appears slowly and also in inefficient Nevertheless. it has been reported that the strength and deformation capacity of high-strength concrete is improved by well-distributed hoops. Due to that argument, this investigation has been compared and analyzed by the experimental works on the deformation capacity and the confinement mechanism of high-strength concrete shear wall of the high-rise building reinforced by rectangular steel tubes and rectangular hoops at both edges of the shear wall.

  • PDF

A Study on the Structural Property of Structural Steel Tubes under Axial Compression (중심압축력을 받는 일반구조용 강관의 구조성능에 관한 연구)

  • Kim, Jong Rak;Lee, Eun Taik;Lee, So Yeon;Baek, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.437-444
    • /
    • 2008
  • The use of imported structural steel tubes has been increased in domestic construction field because of its low price, but the mechanical properties of those steel tube are not verified exactly. This study includes coupon test and stub - column compression test on the structural steel tube. The compression test of stub - column was performed to characterize and quantify the material characteristic and strength of column compatibility, in which we compared the experiment formula and the abstract formula by the application of the LRFD standard formula and multiple column curve.

Analytical Study of Shear Capacity for Large-Diameter Concrete-Filled Steel Tubes (CFT) (대구경 콘크리트 충전형 합성기둥의 전단성능에 관한 해석적 연구)

  • Jung, Eun Bi;Yeom, Hee Jin;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.435-445
    • /
    • 2015
  • Concrete filled steel tube(CFT), which has superior ductility and strength, is used for building column, bridge piers of ocean structure. Shear design equations of CFT existing in structural design provisions are excessively conservative. It has an effect on constructability and the economics of CFT. However, to suggest the reasonable shear design equation, experimental studies on the shear capacity of CFT have been rarely conducted. This study is analytical research to suggest improved shear design equations of large-diameter concrete-filled steel tubes. This analytical research was conducted to apply finite element analysis model of CFT based on the prior research. It was verified by comparison with prior test results. The verified model was used for parameter studies to estimate the influence of overhang length, concrete compressive strength and diameter-thickness ratio on shear strength.

Torsional Behaviour of Concrete Filled Circular Steel Tube Column Considering Confinement Effect (구속효과를 고려한 콘크리트 충전 원형강관 기둥의 비틀림 거동)

  • Yun, Bok Hee;Lee, Eun Taik;Park, Ji Young;Jang, Kyong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.529-541
    • /
    • 2004
  • Concrete filled steel tube structures were recently used in constructing high-rise buildings due to their effectiveness. Studies on concrete filled steel tubes have been focused on the experiments of uni-axial compression and bending and eccentric compression. There were also a few studies that investigated CFT member behavior under combined compression and torsion. The behavior of a circular CFT column under combined torsion and compression was theoretically investigated, considering the confinement of steel tubes on the concrete, the softening of the concrete, and the spiral effect, which were the dominant factors that influenced compression and torsion strength. The biaxial stress effects due to diagonal cracking were also taken into account. By applying those factors to compatibility and equilibrium conditions, the basic equation was derived, and the equation could be used to incorporate the torsional behavior of the entire loading history of the CFT member.

A Study on the Strength Evaluation of Rectangular Steel Tubular Columns Infilled with High Strength Concrete (고강도콘크리트 충전 각형강관기둥의 내력평가에 관한 연구)

  • Shim, Jong Seok;Han, Duck Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.95-102
    • /
    • 2011
  • The CFT columns used in thin-walled steel tubes can be more economical, because it was expected the increase of strength by restriction for the local buckling of steel tubes. The purpose of this paper is to review feasibility of existing design formula and verify the applicability limit of width-to-thickness ratio for increasing the strength of rectangular CFT columns. As the main parameters of experiments, width-to-thickness ratios of steel tube, height of rectangular concrete columns, and concrete filled or not. The strength of concrete are selected to 90MPa. From the test results, the confinement effect of steel tube on the compressive strength of infilled concrete is remarkably appeared in the thin-walled rectangular steel tube columns infilled wih high strength concrete. By the non-linear analysis, the axial strength from experiment result was given higher than analysis result for all CFT stub columns.

Compressive behavior of concrete-filled square stainless steel tube stub columns

  • Dai, Peng;Yang, Lu;Wang, Jie;Ning, Keyang;Gang, Yi
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • Concrete-filled square stainless steel tubes (CFSSST), which possess relatively large flexural stiffness, high corrosion resistance and require simple joint configurations and low maintenance cost, have a great potential in constructional applications. Despite that the use of stainless steel may result in high initial cost compared to their conventional carbon steel counterparts, the whole-life cost of CFSSST is however considered to be lower, which offers a competitive choice in engineering practice. In this paper, a comprehensive experimental and numerical program on 24 CFSSST stub column specimens, including 3 austenitic and 3 duplex stainless steel square hollow section (SHS) stub columns and 9 austenitic and 9 duplex CFSSST stub columns, has been carried out. Finite element (FE) models were developed to be used in parametric analysis to investigate the influence of the tube thickness and concrete strength on the ultimate capacities more accurately. Comparisons of the experimental and numerical results with the predictions made by design guides ACI 318, ANSI/AISC 360, Eurocode 4 and GB 50936 have been performed. It was found that these design methods generally give conservative predictions to the ultimate capacities of CFSSST stub columns. Improved calculation methods, developed based on the Continuous Strength Method, have been proposed to provide more accurate estimations of the ultimate resistances of CFSSST stub columns. The suitability of these proposals has been validated by comparison with the test results, where a good agreement between the predictions and the test results have been achieved.

Optimization and investigations of low-velocity bending impact of thin-walled beams

  • Hossein Taghipoor;Mahdi Sefidi
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.159-181
    • /
    • 2024
  • In the present study, the effect of geometrical parameters of two different types of aluminum thin-walled structures on energy absorption under three-bending impact loading has been investigated experimentally and numerically. To evaluate the effect of parameters on the specific energy absorption (SEA), initial peak crushing force (IPCF), and the maximum crushing distance (δ), a design of experiment technique (DOE) with response surface method (RSM) was applied. Four different thin-walled structures have been tested under the low-velocity impact, and then they have simulated by ABAQUS software. An acceptable consistency between the numerical and experimental results was obtained. In this study, statistical analysis has been performed on various parameters of three different types of tubes. In the first and the second statistical analysis, the dimensional parameters of the cross-section, the number of holes, and the dimensional parameter of holes were considered as the design variables. The diameter reduction rate and the number of sections with different diameters are related to the third statistical analysis. All design points of the statistical method have been simulated by the finite element package, ABAQUS/Explicit. The final result shows that the height and thickness of tubes were more effective than other geometrical parameters, and despite the fact that the deformations of the cylindrical tubes were around forty percent greater than the rectangular tubes, the top desirability was relevant to the cylindrical tubes with reduced cross-sections.