• Title/Summary/Keyword: steel tubes

Search Result 419, Processing Time 0.026 seconds

A Comparison Study on Strength of Stainless Steel Tube and Steel Tube Stub-columns (스테인리스강관과 일반구조용강관 단주내력 비교에 관한 연구)

  • Jang, Ho Ju;Yu, Jea Hee;Yang, Young Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.561-570
    • /
    • 2003
  • This study evaluate the characteristics of stainless steel for the use of stainless steel tubes as structural members. The strength of stainless steel tube was compared with that of steel tube stub-columns through tensile experiment and compressed experiment. The selected experimental parameters were diameter (width)-thickness and section shape. The results of tests showed that stainless steel tubes could be predicted as superior to steel tubes in terms of tensile strength, yield ratio, elongation percentage, and absorption ability of energy. The yield strength of stainless steel tubes were found to be higher than the Korean Standards ($Fy=2.1tf/cm^2$) and the design strength of SIJ-ASD($Fy=2.4tf/cm^2$). It was also higher then the yield strength of steel tubes. The plastic deformation of stainless steel tubes was found to beto that of steel tubes.

ML-based prediction method for estimating vortex-induced vibration amplitude of steel tubes in tubular transmission towers

  • Jiahong Li;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.27-40
    • /
    • 2024
  • The prediction of VIV amplitude is essential for the design and fatigue life estimation of steel tubes in tubular transmission towers. Limited to costly and time-consuming traditional experimental and computational fluid dynamics (CFD) methods, a machine learning (ML)-based method is proposed to efficiently predict the VIV amplitude of steel tubes in transmission towers. Firstly, by introducing the first-order mode shape to the two-dimensional CFD method, a simplified response analysis method (SRAM) is presented to calculate the VIV amplitude of steel tubes in transmission towers, which enables to build a dataset for training ML models. Then, by taking mass ratio M*, damping ratio ξ, and reduced velocity U* as the input variables, a Kriging-based prediction method (KPM) is further proposed to estimate the VIV amplitude of steel tubes in transmission towers by combining the SRAM with the Kriging-based ML model. Finally, the feasibility and effectiveness of the proposed methods are demonstrated by using three full-scale steel tubes with C-shaped, Cross-shaped, and Flange-plate joints, respectively. The results show that the SRAM can reasonably calculate the VIV amplitude, in which the relative errors of VIV maximum amplitude in three examples are less than 6%. Meanwhile, the KPM can well predict the VIV amplitude of steel tubes in transmission towers within the studied range of M*, ξ and U*. Particularly, the KPM presents an excellent capability in estimating the VIV maximum amplitude by using the reduced damping parameter SG.

Fatigue tests of damaged tubes under flexural loading

  • Ghazijahani, Tohid Ghanbari;Jiao, Hui;Holloway, Damien
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.223-236
    • /
    • 2015
  • Despite the proliferation of the industrial application of steel tubes, the effect of collision on the surface of steel tubes subject to cyclic loading has largely remained untouched. This paper studies the fatigue behavior of steel tubes which are impacted by an external object. A dent imperfection caused by a collision was modeled and fatigue tests were conducted using a MTS machine. Fatigue life as well as the failure modes were thoroughly discussed in a way that the fatigue life of the dented tubes with similar geometrical specifications at full-scale can be generalized.

Fatigue Life Estimation of $CO^2$ Gas Arc Welded Carbon Steel Tubes ($CO^2$ 가스 용접된 강관파일의 피로수명 평가)

  • 이억섭;김동준;김승권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.13-18
    • /
    • 1998
  • In this study. the fatigue lives of two kinds of specimens made by $CO^2$ gas weld were assessed. The materials for two kinds of specimens were taken out of the virgin carbon steel tubes and the used carbon steel tubes respectively. As a result, it was found that the fatigue lives of two groups of specimens were in the same order of magnitude.

  • PDF

Experimental and analytical behaviour of cogged bars within concrete filled circular tubes

  • Pokharel, Tilak;Yao, Huang;Goldsworthy, Helen M.;Gad, Emad F.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1067-1085
    • /
    • 2016
  • Recent research on steel moment-resisting connection between steel beams and concrete filled steel tubes has shown that there are considerable advantages to be obtained by anchoring the connection to the concrete infill within the tube using anchors in blind bolts. In the research reported here, extensive experimental tests and numerical analyses have been performed to study the anchorage behaviour of cogged deformed reinforcing bars within concrete filled circular steel tubes. This data in essential knowledge for the design of the steel connections that use anchored blind bolts, both for strength and stiffness. A series of pull-out tests were conducted using steel tubes with different diameter to thickness ratios under monotonic and cyclic loading. Both hoop strains and longitudinal strains in the tubes were measured together with applied load and slip. Various lead-in lengths before the bend and length of tailed extension after the bend were examined. These dimensions were limited by the dimensions of the steel tube and did not meet the requirements for "standard" cogs as specified in concrete standards such as AS 3600 and ACI 318. Nevertheless, all of the tested specimens failed by bar fracture outside the steel tubes. A comprehensive 3D Finite Element model was developed to simulate the pull-out tests. The FE model took into account material nonlinearities, deformations in reinforcing bars and interactions between different surfaces. The FE results were found to be in good agreement with experimental results. This model was then used to conduct parametric studies to investigate the influence of the confinement provided by the steel tube on the infilled concrete.

Improving buckling response of the square steel tube by using steel foam

  • Moradi, Mohammadreza;Arwade, Sanjay R.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1017-1036
    • /
    • 2014
  • Steel tubes have an efficient shape with large second moment of inertia relative to their light weight. One of the main problems of these members is their low buckling resistance caused from having thin walls. In this study, steel foams with high strength over weight ratio is used to fill the steel tube to beneficially modify the response of steel tubes. The linear eigenvalue and plastic collapse FE analysis is done on steel foam filled tube under pure compression and three point bending simulation. It is shown that steel foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior is investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve, in a way that, the failure mode change from local buckling to yielding.

Numerical and experimental investigation on the temperature distribution of steel tubes under solar radiation

  • Liu, Hongbo;Chen, Zhihua;Zhou, Ting
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.725-737
    • /
    • 2012
  • The temperature on steel structures is larger than the ambient air temperature under solar radiation and the temperature distribution on the affected structure is non-uniform and complicated. The steel tube, as a main structural member, has been investigated through experiment and numerical analysis. In this study, the temperature distribution on a properly designed steel tube under solar radiation is measured. A finite element transient thermal analysis method is presented and verified by the experimental results and a series of parametric studies are carried out to investigate the influence of various geometric properties and orientation on the temperature distribution. Furthermore, a simplified approach is proposed to predict the temperature distribution of steel tube. Based on both the experimental and the numerical results, it is concluded that the solar radiation has a significant effect on the temperature distribution of steel tubes. Under the solar radiation, the temperature of steel tubes is about $20.6^{\circ}C$ higher than the ambient air temperature. The temperature distribution of steel tubes is sensitive to the steel solar radiation absorption, steel tube diameter and orientation, but insensitive to the solar radiation reflectance and thickness of steel tube.

Concrete filled double skin square tubular stub columns subjected to compression load

  • Uenaka, Kojiro
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.745-751
    • /
    • 2021
  • Concrete filled double skin tubular members (CFDST) consist of double concentric circular or square steel tubes with concrete filled between the two steel tubes. The CFDST members, having a hollow section inside the internal tube, are generally lighter than ordinary concrete filled steel tubular members (CFT) which have a solid cross-section. Therefore, when the CFDST members are applied to bridge piers, reduction of seismic action can be expected. The present study aims to investigate, experimentally, the behavior of CFDST stub columns with double concentric square steel tubes filled with concrete (SS-CFDST) when working under centric compression. Two test parameters, namely, inner-to-outer width ratio and outer square steel tube's width-to-thickness were selected and outer steel tube's width-to-thickness ratio ranging from 70 to 160 were considered. In the results, shear failure of the concrete fill and local buckling of the double skin tubes having largest inner-to-outer width ratio were observed. A method to predict axial loading capacity of SS-CFDST is also proposed. In addition, the load capacity in the axial direction of stub column test on SS-CFDST is compared with that of double circular CFDST. Finally, the biaxial stress behavior of both steel tubes under plane stress is discussed.

Monitoring degradation in concrete filled steel tubular sections using guided waves

  • Beena, Kumari;Shruti, Sharma;Sandeep, Sharma;Naveen, Kwatra
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.371-382
    • /
    • 2017
  • Concrete filled steel tubes are extensively applied in engineering structures due to their resistance to high tensile and compressive load and convenience in construction. But one major flaw, their vulnerability to environmental attack, can severely reduce the strength and life of these structures. Degradation due to corrosion of steel confining the concrete is one of the major durability problems faced by civil engineers to maintain these structures. The problem accelerates as inner surface of steel tube is in contact with concrete which serves as electrolyte. If it remains unnoticed, it further accelerates and can be catastrophic. This paper discusses a non-destructive degradation monitoring technique for early detection corrosion in steel tubes in CFST members. Due to corrosion, damage in the form of debonding and pitting occurs in steel sections. Guided ultrasonic waves have been used as a feasible and attractive solution for the detection and monitoring of corrosion damages in CFST sections. Guided waves have been utilized to monitor the effect of notch and debond defects in concrete filled steel tubes simulating pitting and delamination of steel tubes from surrounding concrete caused by corrosion. Pulse transmission has been used to monitor the healthy and simulated damaged specimens. A methodology is developed and successfully applied for the monitoring of concrete filled steel tubular sections undergoing accelerated chloride corrosion. The ultrasonic signals efficiently narrate the state of steel tube undergoing corrosion.

Degradation of Carbon Steel Tube after Long Time Exposure at Petrochemical Plant (석유화확 Plant에서 장시간 사용된 튜브형태 탄소강의 열화현상)

  • Baik, Nam Ik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.1
    • /
    • pp.16-20
    • /
    • 2000
  • There have been little reports on the degradation of medium-carbon steel tubes served at high temperature for a long period. The purpose of this research was to provide the information of the proper replacement span of the tubes with the new ones. We investigated the medium-carbon steel tubes which were used at petrochemical plant for about 50,000 hrs to examine their mechanical properties and microstructures. Experimental results showed that the tubes satisfied the specification of ASTM despite such a long period of service, but mechanical properties, especially charpy impact values, were reduced. It concludes that the tubes on service at the plants needs a periodical inspection.

  • PDF