• 제목/요약/키워드: steel structure construction

검색결과 1,021건 처리시간 0.029초

DEVELOP AND USE OF STUD PENETRATE WELDING TECHNOLOGY IN COMPOSITE FLOOR OF STEEL STRUCTURE

  • Fu, Jifei;Zhang, Youquan;Ma, Dezhi
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.349-354
    • /
    • 2002
  • Stud penetrate welding is an important item of composite floor in modern steel structure, especially in high-rise buildings. But it is difficult to get satisfied welding quality due to all kinds of factors. In this paper, the author put forward a new welding procedure named method of energy control through analysis and comparison of the wave curves of stud welding based on large amount of experiments and tests in laboratory and construction areas. The use of this welding procedure in some large engineering in recent years proved that this method is effective and practicable

  • PDF

어태치먼트의 형상 및 크기가 금속용사 방식피막의 부착강도에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Bond Strength of the Metal Sprayed Coating According to the Shape and Size of the Attachment)

  • 박승기;박진호;류화성;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.109-110
    • /
    • 2016
  • The recent introduction of Metal spraying method apply to construction and civil steel structure is increasing. In applying the metal spraying lining process of construction and civil steel structure to secure the adhesion strength between the metal thermal spray coating and the steel structure and the highest priority requirements are required bond strength test reliable measurement accordingly. In this study, by calculating the deposition intensity and the standard deviation, coefficient of variation corresponding to the bonding area, unlike the shape of the attachment we compared the results.

  • PDF

A study on the comparison of a steel building with braced frames and with RC walls

  • Buyuktaskin, Almila H. Arda
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.263-270
    • /
    • 2017
  • In this study, two geometrically identical multi-storey steel buildings with different lateral load resisting systems are structurally analyzed under same earthquake conditions and they are compared with respect to their construction costs of their structural systems. One of the systems is a steel structure with eccentrically steel braced frames. The other one is a RC wall-steel frame system, that is a steel framed structure in combination with a reinforced concrete core and shear walls of minimum thickness that the national code allows. As earthquake resisting systems, steel braced frames and reinforced concrete shear walls, for both cases are located on identical places in either building. Floors of both buildings will be of reinforced concrete slabs of same thickness resting on composite beams. The façades are assumed to be covered identically with light-weight aluminum cladding with insulation. Purpose of use for both buildings is an office building of eight stories. When two systems are structurally analyzed by FEM (finite element method) and dimensionally compared, the dual one comes up with almost 34% less cost of construction with respect to their structural systems. This in turn means that, by using a dual system in earthquake zones such as Turkey, for multi-storey steel buildings with RC floors, more economical solutions can be achieved. In addition, slender steel columns and beams will add to that and consequently more space in rooms is achieved.

Seismic collapse probability of eccentrically braced steel frames

  • Qi, Yongsheng;Li, Weiqing;Feng, Ningning
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.37-52
    • /
    • 2017
  • To quantitatively assess the safety against seismic collapse of eccentrically braced steel frame (EBSF) system, 24 typical EBSFs with K-shape and V-shape braces with seismic precautionary intensities 8 and 9 were designed complying with China seismic design code and relative codes to constitute archetype space of this structure system. In the archetype space, the collapse probability of the structural system under maximum considered earthquakes (MCE) was researched. The results show that the structures possess necessary safety against seismic collapse when they respectively encounter the maximum considered earthquakes corresponding to their seismic precautionary levels, and their collapse probabilities increase with increasing seismic precautionary intensities. Moreover, the EBSFs with V-shape braces have smaller collapse probability, thus greater capacity against seismic collapse than those with K-shape braces.

CFT 구조용 초고강도 콘크리트의 충전성 평가를 위한 실험적 연구 (An Experimental Study on the Evaluation of the Compactness of Super-High Strength Concrete for CFT structure)

  • 이장환;황병준;김제섭;정근호;임남기;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.517-520
    • /
    • 2004
  • Concrete Filled steel Tube pipe structure is a rational type of structure that maximizes performance by combining the strong points of steel frame and concrete. In the structure, the confining effect of steel pipes increases the bearing power of infilled concrete and the strengthening of local bucking of steel pipes by infilled concrete increases the bearing power of members. and these result in the reduction of cross-sectional area and high transformation capacity. Moreover. the structure is economically efficient and widely applicable that it is used from super-high buildings to residential, business and apartment buildings. It enables the construction of multi-story buildings with long spans using columns of small cross-sectional area. In case of diaphragm, however, it is difficult to confirm the compactness of the closed inside of steel pipes. The present study examined the properties of super-high strength concrete over 80MPa by comparing it with 40MPa concrete through heat conductivity and length change tests based on a mixture ratio satisfying the mixture goal presented in the guideline for the design and construction of concrete-filled steel pipe structure. and evaluated the performance of super-high strength concrete according to the shape and size of the aperture ratio of diaphragm.

  • PDF

혼합구조로 이루어진 보-기둥 접합부의 구조적 거동 특성 (The Properties for Structural Behavior of Beam-Column Joint Consisting of Composite Structure)

  • 이승조;박정민;김화중
    • 한국강구조학회 논문집
    • /
    • 제12권4호통권47호
    • /
    • pp.445-455
    • /
    • 2000
  • 본 연구는 최근의 건설 환경 변화에 따른 여러 가지 제문제점들에 대한 구조적 측면에서의 대응책의 하나로서 새로운 구조 시스템 전개를 위해 이종구조부재로 구성된 보기둥 접합부 모델을 제안한 것이다. 본 연구에서는 장스팬 S보의 강성을 향상시키기 위해 S조의 단부를 RC조로 보강하여 강성 및 내력증대를 꾀하였으며, 이종구조 사이의 원활한 응력 전달을 목적으로 SRC조 단부의 보 주근은 U자형 갈고리 모양으로 정착하여 철골 플랜지에 용접 접합하였다. 일련의 실험을 통해 접합부 강성 및 내력 특성을 고찰하였고 본 접합부의 가능성을 제시하였다.

  • PDF

Evaluating high performance steel tube-framed diagrid for high-rise buildings

  • Lee, Dongkyu;Ha, Taehyu;Jung, Miyoung;Kim, Jinho
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.289-303
    • /
    • 2014
  • In recent, development of construction and design technology gives taller, larger and heavier steel framed structures. With the tendency of increasing high-rise building, this study is strongly related to structural system, one of significant components in structural design. This study presents an innovative structural system, with high performance steel material, diagrid. Its detail, structural analysis, and structural experiments are all included for the development of new structures.

Suggestion and Verification of Assessment model on Construction-Cost of Steel Bridge in Project Performance Phases

  • Kab-Soo Kyung;Hye-Yeon Park;Sin-Hwa Kang;Eun-Kyoung Jeon
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.606-615
    • /
    • 2009
  • Estimating the reasonable construction-cost according to the construction phase in public construction is an important element for securing and executing a national budget efficiently. As a general rule, the predetermined cost of construction is estimated at the end of the design of the target structure. Therefore, it seems to be a considerably difficult problem to estimate the approximate cost of construction, only with its basic information of the bridge in the design planning phase and the early design stage where we can not have specific detailed-section of the target structure. In this paper, we present the calculation of construction-cost in the planning phase based on the analysis of factors affecting the cost of construction conducted in the previous study. Beside, to estimate the cost of construction in early design phase, we would like to present the calculation of construction-cost in the early design phase by executing the analysis of data collected from 61 steel box bridges. It was found from the result of study that the estimated cost of construction gained by the calculation of construction-cost in this paper reduces the error between the real cost of construction and that by the existing method of using.

  • PDF

대공간 지붕 철골공사의 시공계획 중점관리항목 도출 (Deriving of Critical Factors for Construction Planning in Large Span Roof Construction)

  • 이명도
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.67-75
    • /
    • 2018
  • Steel roof construction is on the most important and critical factors in the large spatial construction and necessary to be prepared under a radical planning. Therefore, the major management factors of steel roofing structure assembly must be critically reviewed during planning. Through the review process, it is necessary to reduce the construction cost, to prevent delays in the construction schedule, and to minimize construction errors. However, domestically due to the lack experience in large spatial constructions, a planning of roof construction is limited to have a radical planning. Especially due to unclear organization of the management factors in hierarchy, using them in reality for construction planning is difficult and reliability is low. Therefore, in this study, the goal is to conduct the major management factors in the large spatial construction. To achieve this, we have reviewed and analyzed the numbers of construction plans and construction reports and conducted a total 68 of the management factors. Based on the conducted factors, we have interviewed 16 experts with experience in large spatial construction. From the interview result, we have deduced the factors scored above 4.20 of 10 for critical factors. The results of this study will be used as a guidance for planning steel roofing structure assembly in large spatial construction. The critical factors will be provided to the site mangers for the quality management of large spatial constructions in practice.

CALS oriented design/fabrication information system for steel bridges

  • Isohata, Hiroshi;Fukuda, Masahiko;Watanabe, Sueo
    • Steel and Composite Structures
    • /
    • 제3권1호
    • /
    • pp.13-32
    • /
    • 2003
  • In this paper design and fabrication information system for steel bridge construction is studied and proposed according to the progress of Construction CALS/EC in the construction industry in Japan. The data exchange in this system bases on the text file as well as CAD data with simplified drawings. The concept of this system is discussed following the analysis on the issues of the conventional system. The application of the product model is also discussed including effects and issues on the inspection system. This paper is based on the study carried out by Special Committee on Construction CALS of JASBC to which author belong.