• Title/Summary/Keyword: steel stiffener

Search Result 167, Processing Time 0.021 seconds

Behaviour and strength of back-to-back built-up cold-formed steel unequal angle sections with intermediate stiffeners under axial compression

  • Gnana Ananthi, G. Beulah;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • In cold-formed steel (CFS) structures, such as trusses, transmission towers and portal frames, the use of back-to-back built-up CFS unequal angle sections are becoming increasingly popular. In such an arrangement, intermediate welds or screw fasteners are required at discrete points along the length, preventing the angle sections from buckling independently. Limited research is available in the literature on axial strength of back-to-back built-up CFS unequal angle sections. The issue is addressed herein. This paper presents an experimental investigation reported by the authors on back-to-back built-up CFS unequal angle sections with intermediate stiffeners under axial compression. The load-axial shortening behaviour along with the deformed shapes at failure are reported. A nonlinear finite element (FE) model was then developed, which includes material non-linearity, geometric imperfections and modelling of intermediate fasteners. The FE model was validated against the experimental test results, which showed good agreement, both in terms of failure loads and deformed shapes at failure. The validated finite element model was then used for the purpose of a parametric study comprising 96 models to investigate the effect of longer to shorter leg ratios, stiffener provided in the longer leg, thicknesses and lengths on axial strength of back-to-back built-up CFS unequal angle sections. Four different thicknesses and seven different lengths (stub to slender columns) with three overall widths to the overall depth (B/D) ratios were investigated in the parametric study. Axial strengths obtained from the experimental tests and FE analyses were used to assess the performance of the current design guidelines as per the Direct Strength Method (DSM); obtained comparisons show that the current DSM is conservative by only 7% and 5% on average, while predicting the axial strengths of back-to-back built-up CFS unequal angle sections with and without the stiffener, respectively.

Failure behavior analysis of a penetration type pile head stiffener (관통형 말뚝두부 보강의 파괴거동해석)

  • Park, Jun-Hwa;Moon, Keun-Ho;Lee, Gye-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.446-449
    • /
    • 2009
  • 본 연구에서는 강관말뚝과 기초와의 연결시 보강에 사용되는 관통형 말뚝두부보강에 대한 파괴거동을 파악하기 위한 구조해석을 수행하였다. 구조물의 관공부에 대한 해석에서 철근의 인장파괴시 발생하는 관통부의 응력을 검토하고 철근의 파괴형상과 실험에서 얻어진 철근의 파괴형상을 비교하였다. 대상구조물의 전체적인 파괴거동은 인장, 압축, 전단, 휨모멘트에 대하여 파괴가 발생할 때까지 변위를 증가시키고 이때 발생하는 반력과 구조물의 파괴거동을 파악하였다. 이 때 강재의 비선형 거동 및 충진콘크리트의 비선형및 균열거동이 고려되었다. 해석의 결과로 대상구조물의 파괴거동 및 극한하중 저항능력이 평가되었다.

  • PDF

Nonlinear bending analysis of laminated composite stiffened plates

  • Patel, Shuvendu N.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.867-890
    • /
    • 2014
  • This paper deals with the geometric nonlinear bending analysis of laminated composite stiffened plates subjected to uniform transverse loading. The eight-noded degenerated shell element and three-noded degenerated curved beam element with five degrees of freedom per node are adopted in the present analysis to model the plate and stiffeners respectively. The Green-Lagrange strain displacement relationship is adopted and the total Lagrangian approach is taken in the formulation. The convergence study of the present formulation is carried out first and the results are compared with the results published in the literature. The stiffener element is reformulated taking the torsional rigidity in an efficient manner. The effects of lamination angle, depth of stiffener and number of layers, on the bending response of the composite stiffened plates are considered and the results are discussed.

Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior

  • Darilmaz, Kutlu
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.275-289
    • /
    • 2012
  • In this paper the influence of stiffener location, rise/span ratio and fibre orientation on vibration behavior of corner supported hypar shells is studied by using a four-node hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Benchmark problems are solved to validate the approach and free vibration response of stiffened orthotropic hypar shells is studied both with respect to fundamental frequency and mode shapes by varying the location of stiffeners, rise/span ratio and fiber orientation.

Unequal depth beam to column connection joint

  • Ben Mou;Aijia Zhang;Wei Pan
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.823-837
    • /
    • 2023
  • This paper presents the seismic performance of seven beam-column joints with an eccentricity between beam depths under cyclic loadings. The failure modes of the panel zone were divided into two types. One was the shear force failure that appeared in the entire panel zone (SFEPZ), the other was the shear force failure that appeared in the partial panel zone (SFPPZ). Seven finite element models were established using multi-scale methods. Compared with the experimental specimens, the hysteretic loops exhibited a similar trend. The multi-scale models could accurately simulate the experimental results. Furthermore, the calculation formulas of yield and plastic shear capacity of unequal-depth joints with outer annular stiffener were proposed.

Seismic Performance of High Strength Steel(HSA800) Beam-to-Column Connections with Improved Horizontal Stiffener (개량수평스티프너를 보강한 고강도강(HSA800) 접합부 내진성능평가)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.361-373
    • /
    • 2014
  • As the height and beam span of buildings built in the construction market increase, increasingly higher quality is being required of the construction materials. In response to this trend, 800MPa tensile strength class steel was developed in domestic company. Currently, experiments applying flexural member, compression member, and connections are continuously conducted, but a design guideline for high strength steel has yet to be established. Among those construction materials, for the high strength steel beam-to-column connections, the evaluation of implementing ductile connections for the high strength steel beam-to-column connections is producing pessimistic results and the number of related researches is inadequate because of the high yield ratio, which is the characteristic of high strength steel. This study on implementation of ductile connections made of high strength steel was conducted using the connection detail as the variable, for the purpose of enhancing the deformation capacity of high strength steel beam-to-column connections. Cyclic loading test and nonlinear finite element analysis were conducted with full-scale mock-up connection models with the applied connection details. As a result, the structural performance of high-strength steel beam-to-column connection with presented detail was contented with demand of Special Moment Frames of KBC standard.

The vessel collision load on bridge with fender system (방호공을 고려한 선박의 충돌하중)

  • 이계희;고재용;이성로
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.193-200
    • /
    • 2004
  • In this study, the impact load on bridge by vessel collision in consideration of fender system is evaluated by numerical method. The bow of object vessel(DWT5000) is standardized, and modeled by shell elements. The main body of objective vessel is modeled by beam elements that present mass distribution and stiffness of vessel. The buoyancy effect of vessel is considered as linear spring. The two types of fender systems, such as steel and rubber are analyzed in this study. In steel fender system, the steel plates that absorb collision energy by its collapse are modeled by shell element with stiffener. The steel is material modeled elastic-plastic material. In the rubber fender system, the rubber material is modeled hyper-elastic material and the main body of fender is modeled by solid elements. The global impact responses of vessel and fender system are evaluated by explicit dynamic scheme. The results show that the magnitude of vessel collision force are depended on the material behavior of fender system. Also the values of collision load are conservative compare to the those of design codes.

  • PDF

Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines

  • Kurtoglu, Ahmet Emin
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Steel girders are the structural members often used for passing long spans. Mostly being subjected to patch loading, or concentrated loading, steel girders are likely to face sudden deformation or damage e.g., web breathing. Horizontal or vertical stiffeners are employed to overcome this phenomenon. This study aims at assessing the feasibility of a machine learning method, namely the support vector machines (SVM) in predicting the patch loading resistance of longitudinally stiffened webs. A database consisting of 162 test data is utilized to develop SVM models and the model with best performance is selected for further inspection. Existing formulations proposed by other researchers are also investigated for comparison. BS5400 and other existing models (model I, model II and model III) appear to yield underestimated predictions with a large scatter; i.e., mean experimental-to-predicted ratios of 1.517, 1.092, 1.155 and 1.256, respectively; whereas the selected SVM model has high prediction accuracy with significantly less scatter. Robust nature and accurate predictions of SVM confirms its feasibility of potential use in solving complex engineering problems.

Numerical study of steel box girder bridge diaphragms

  • Maleki, Shervin;Mohammadinia, Pantea;Dolati, Abouzar
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.681-699
    • /
    • 2016
  • Steel box girders have two webs and two flanges on top that are usually connected with shear connectors to the concrete deck and are also known as tub girders. The end diaphragms of such bridges comprise of a stiffened steel plate welded to the inside of the girder at each end. The diaphragms play a major role in transferring vertical and lateral loads to the bearings and substructure. A review of literature shows that the cyclic behavior of diaphragms under earthquake loading has not been studied previously. This paper uses a nonlinear finite element model to study the behavior of the end diaphragms under gravity and seismic loads. Different bearing device and stiffener configurations have been considered. Affected areas of the diaphragm are distinguished.

Assessment of the performance of composite steel shear walls with T-shaped stiffeners

  • Zarrintala, Hadi;Maleki, Ahmad;Yaghin, Mohammad Ali Lotfollahi
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.297-313
    • /
    • 2022
  • Composite steel plate shear wall (CSPSW) is a relatively novel structural system proposed to improve the performance of steel plate shear walls by adding one or two layers of concrete walls to the infill plate. In addition, the buckling of the infill steel plate has a significant negative effect on the shear strength and energy dissipation capacity of the overall systems. Accordingly, in this study, using the finite element (FE) method, the performance and behavior of composite steel shear walls using T-shaped stiffeners to prevent buckling of the infill steel plate and increase the capacity of CSPSW systems have been investigated. In this paper, after modeling composite steel plate shear walls with and without steel plates with finite element methods and calibration the models with experimental results, effects of parameters such as several stiffeners, vertical, horizontal, diagonal, and a combination of T-shaped stiffeners located in the composite wall have been investigated on the ultimate capacity, web-plate buckling, von-Mises stress, and failure modes. The results showed that the arrangement of stiffeners has no significant effect on the capacity and performance of the CSPSW so that the use of vertical or horizontal stiffeners did not have a significant effect on the capacity and performance of the CSPSW. On the other hand, the use of diagonal hardeners has potentially affected the performance of CSPSWs, increasing the capacity of steel shear walls by up to 25%.