• Title/Summary/Keyword: steel reinforced concrete beams

Search Result 788, Processing Time 0.022 seconds

A Study on the Strength Capacity and the Strengthening Effects of Steel Reinforced Concrete(SRC) Beams with Carbon Fiber Sheets (CFS) and Glass Fiber Sheets (GFS) (탄소섬유 및 유리섬유로 보강한 합성보의 내력산정과 보강효과에 대한연구)

  • 김희규;신영수;최완철;홍영균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.565-570
    • /
    • 1997
  • This study is on the strength capacity and the strengthening effects of crarbon fiber sheets(CFS) and glass fiber sheets (GFS) on steel reinforced concrete(SRC) beams. SRC beams are often used on high-rise building construction to save story height and construction cost. However, there are no strengthening design code in Korea and most engineers design it as steel beams ignored the composite effect if reinforced concrete. Test results on steel reinforced concrete beams reveal thar the strength capacity of SRC beam is more than simple addition of steel and reinforced concrete beams. In case of steel reinforced concrete beams, ultimate moment capacity of strengthening beam of carbon fiber sheets is 120% of non-strengthening one.

  • PDF

Flexural Strength of Steel Fiber Reinforced Concrete Beams (강섬유보강 콘크리트보의 휨강도에 관한 연구)

  • 김우석;백승민;곽윤근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.695-700
    • /
    • 2001
  • The objective of this study is to evaluate the flexure strength of steel fiber reinforced concrete beams and the effect of the adding steel fiber to flexural strength, and is to compare the proposed equation with the previous equation for predicting the flexural strength of fiber reinforced concrete beams. Based on earlier published studies and tests, predictive equation is proposed for evaluating the flexural strength of steel fiber reinforced concrete beams. The proposed equation gave good prediction for the flexural strength of the tested beams.

  • PDF

Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks

  • Nehdi, M.;El Chabib, H.;Said, A.
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.81-100
    • /
    • 2006
  • To calculate the shear capacity of concrete beams reinforced with fibre-reinforced polymer (FRP), current shear design provisions use slightly modified versions of existing semi-empirical shear design equations that were primarily derived from experimental data generated on concrete beams having steel reinforcement. However, FRP materials have different mechanical properties and mode of failure than steel, and extending existing shear design equations for steel reinforced beams to cover concrete beams reinforced with FRP is questionable. This paper investigates the feasibility of using artificial neural networks (ANNs) to estimate the nominal shear capacity, Vn of concrete beams reinforced with FRP bars. Experimental data on 150 FRP-reinforced beams were retrieved from published literature. The resulting database was used to evaluate the validity of several existing shear design methods for FRP reinforced beams, namely the ACI 440-03, CSA S806-02, JSCE-97, and ISIS Canada-01. The database was also used to develop an ANN model to predict the shear capacity of FRP reinforced concrete beams. Results show that current guidelines are either inadequate or very conservative in estimating the shear strength of FRP reinforced concrete beams. Based on ANN predictions, modified equations are proposed for the shear design of FRP reinforced concrete beams and proved to be more accurate than existing equations.

Prediction of deflection of high strength steel fiber reinforced concrete beams and columns

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.133-151
    • /
    • 2012
  • This paper presents an analytical procedure for the analysis of high strength steel fiber reinforced concrete members considering the cracking effect in the serviceability loading range. Modifications to a previously proposed formula for the effective moment of inertia are presented. Shear deformation effect is also taken into account in the analysis, and the variation of shear stiffness in the cracked regions of members has been considered by reduced shear stiffness model. The effect of steel fibers on the behavior of reinforced concrete members have been investigated by the developed computer program based on the aforementioned procedure. The inclusion of steel fibers into high strength concrete beams and columns enhances the effective moment of inertia and consequently reduces the deflection reinforced concrete members. The contribution of the shear deformation to the total vertical deflection of the beams is found to be lower for beams with fibers than that of beams with no fibers. Verification of the proposed procedure has been confirmed from series of reinforced concrete beam and column tests available in the literature. The analytical procedure can provide an accurate and efficient prediction of deflections of high strength steel fiber reinforced concrete members due to cracking under service loads. This procedure also forms the basis for the three dimensional analysis of frames with steel fiber reinforced concrete members.

Retrofitting reinforced concrete beams by bolting steel plates to their sides -Part 1: Behaviour and experiments

  • Ahmed, Marfique;Oehlers, Deric John;Bradford, Mark Andrew
    • Structural Engineering and Mechanics
    • /
    • v.10 no.3
    • /
    • pp.211-226
    • /
    • 2000
  • A procedure has been developed for bolting steel plates to the sides of existing reinforced concrete beams which can be used to increase the shear strength of beams, increase the flexural strength of beams with enhanced ductility or with only a small loss of ductility, and increase the stiffness of beams in order to reduce deflections and crack widths. It will be shown in this paper, through a qualitative analysis and through the results of testing eight large scale beams, that standard rigid plastic analysis techniques which are commonly used in the design of reinforced-concrete, steel, and composite steel and concrete beams cannot be used directly to design composite bolted-plated reinforced-concrete beams. In the companion paper, quantitative procedures will be used to adapt the standard rigid plastic analysis techniques for this relatively new form of retrofitting.

Flexural behavior of reinforced concrete beams strengthened with a hybrid inorganic matrix - steel fiber retrofit system

  • Papakonstantinou, Christos G.;Katakalos, Konstantinos
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.567-585
    • /
    • 2009
  • The aim of this study was to investigate the flexural behavior of reinforced concrete beams strengthened with a novel strengthening system. Concrete beams were strengthened with a hybrid retrofit system consisting of high strength steel cords impregnated in an inorganic fireproof matrix (Geopolymer). The strengthened reinforced concrete beams along with non-strengthened control beams were tested monotonically under four point bending loading conditions. Moreover, an analytical model is introduced, that can be used to analyze the flexural performance of the strengthened beams. The experimental results indicate that the failure of the strengthened beams was based on the yielding of the reinforcement in the tension face of the beams, followed by a local slippage of the steel cords. The flexural stiffness of the strengthened beams was significantly improved compared to the stiffness of the non-strengthened beams. In conclusion, the strengthening system can provide an effective alternative to commercially available systems.

Slip Characteristics of Reinforced Concrete Beams to Corroded Steel State (철근부식상태에 따른 철근콘크리트 보의 슬립특성)

  • 권영웅;최봉섭;정용식
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.129-135
    • /
    • 1999
  • Reinforced concrete structures are constructed under the basic assumption of perfect bonding between steel and concrete. The corrosion of steel in the reinforced concrete beams results in the excessive cracks and gradual deterioration of concrete. This paper are concerned about the slip characteristics of reinforced concrete between steel and concrete. The accelerated test by external power supply was conducted with the three corrosion rates in the laboratory. As a result, it was obtained as follows: (1) the yield strength of steel was reduced according to corrosion states. (2) the equivalent steel area should be considered for detailed analysis. (3) According to the use of corroded steel or not, slip amounts between concrete and steel in test beams increased as the corrosion rate increased. These results can be explained from the bond loss between concrete and steel in test beams.

Shear strength of steel fiber reinforced concrete deep beams without stirrups

  • Birincioglu, Mustafa I.;Keskin, Riza S.O.;Arslan, Guray
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Concrete is a brittle material and weak in tension. Traditionally, web reinforcement in the form of vertical stirrups is used in reinforced concrete (RC) beams to take care of principal stresses that may cause failure when they are subjected to shear stresses. In recent decades, the potential of various types of fibers for improving post-cracking behavior of RC beams and replacing stirrups completely or partially have been studied. It has been shown that the use of steel fibers randomly dispersed and oriented in concrete has a significant potential for enhancing mechanical properties of RC beams. However, the studies on deep steel fiber reinforced concrete (SFRC) beams are limited when compared to those focusing on slender beams. An experimental program consisting of three RC and nine SFRC deep beams without stirrups were conducted in this study. Besides, various models developed for predicting the ultimate shear strength and diagonal cracking strength of SFRC deep beams without stirrups were applied to experimental data obtained from the literature and this study.

Numerical simulation of concrete beams reinforced with composite GFRP-Steel bars under three points bending

  • Elamary, Ahmed S.;Abd-ELwahab, Rafik K.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.937-949
    • /
    • 2016
  • Fiber reinforced polymer (FRP) applications in the structural engineering field include concrete-FRP composite systems, where FRP components are either attached to or embedded into concrete structures to improve their structural performance. This paper presents the results of an analytical study conducted using finite element model (FEM) to simulate the behavior of three-points load beam reinforced with GFRP and/or steel bars. To calibrate the FEM, a small-scale experimental program was carried out using six reinforced concrete beams with $200{\times}200mm$ cross section and 1000 mm length cast and tested under three point bending load. The six beams were divided into three groups, each group contained two beams. The first group was a reference beams which was cast without any reinforcement, the second group concrete beams was reinforced using GFRP, and the third group concrete beams was reinforced with steel bars. Nonlinear finite element simulations were executed using ANSYS software package. The difference between the theoretical and experimental results of beams vertical deflection and beams crack shapes were within acceptable degree of accuracy. Parametric study using the calibrated model was carried out to evaluate two parameters (1) effect of number and position of longitudinal main bars on beam behavior; (2) performance of concrete beam with composite longitudinal reinforcement steel and GFRP bars.

A study on load-deflection behavior of two-span continuous concrete beams reinforced with GFRP and steel bars

  • Unsal, Ismail;Tokgoz, Serkan;Cagatay, Ismail H.;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.629-637
    • /
    • 2017
  • Continuous concrete beams are commonly used as structural members in the reinforced concrete constructions. The use of fiber reinforced polymer (FRP) bars provide attractive solutions for these structures particularly for gaining corrosion resistance. This paper presents experimental results of eight two-span continuous concrete beams; two of them reinforced with pure glass fiber reinforced polymer (GFRP) bars and six of them reinforced with combinations of GFRP and steel bars. The continuous beams were tested under monotonically applied loading condition. The experimental load-deflection behavior and failure mode of the continuous beams were examined. In addition, the continuous beams were analyzed with a numerical method to predict the load-deflection curves and to compare them with the experimental results. Results show that there is a good agreement between the experimental and the theoretical load-deflection curves of continuous beams reinforced with pure GFRP bars and combinations of GFRP and steel bars.