• Title/Summary/Keyword: steel plating

Search Result 166, Processing Time 0.037 seconds

A Study on the Collapse Strength Characteristics of Ship Bottom Plating Subject to Slamming Induced Impact Lateral Pressure Loads (선저슬래밍 충격횡압력을 받는 선체 판부재의 붕괴강도 특성에 관한 연구)

  • Jeom-Kee Park;Jang-Yang Chung;Young-Min Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.77-93
    • /
    • 1999
  • The twin aims of the paper are to investigate the collapse strength characteristics of ship plating subject to impact pressure loads and to develop a simple structural design formula considering impact load effects. The general purpose nonlinear finite element program STARDYNE together with existing experimental results is used to investigate the collapse behavior of plating under impact pressure loads. The rigid plastic theory taking into account large deflection effects is applied to the development of the design formulation. In the theoretical method, the collapse strength formulation for plating subject to hydrostatic pressure is first derived using the rigid plastic theory. By including the strain rate erects in the formulation it can be applied to impact pressure problems. As illustrative examples, the collapse behavior of steel unstiffened plates and aluminum alloy stiffened panels subject to impact pressure loads is analyzed.

  • PDF

Study on the deposition rate and vapor distribution of Al films prepared by vacuum evaporation and arc-induced ion plating (증착방법에 따른 Al 피막의 증착율 및 증기분포에 관한 연구)

  • 정재인;정우철;손영호;이득진;박성렬
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.207-215
    • /
    • 2000
  • Al films on cold-rolled steel sheet have been prepared by vacuum evaporation and arc-induced ion plating, respectively, and the evaporation rate and vapor distribution (thickness distribution over the substrate) have been investigated according to deposition conditions. The arc-induced ion plating (AIIP) method have been employed, which makes use of arc-like discharge current induced by ionization electrode located near the evaporation source. The AIIP takes advantage of high ionization rate compared with conventional ion plating, and can be carried out at low pressure of less than $10^{-4}$ torr. Very high evaporation rate of more than 2.0 mu\textrm{m}$/min could be achieved for Al evaporation using alumina liner by electron beam evaporation. The geometry factor n for the $cos^{n/\phi}$ vapor distribution, which affects the thickness distribution of films at the substrate turned out to be around 1 for vacuum evaporation, while it features around 2 or higher for ion plating. For the ion plated films, it has been found that the ionization condition and substrate bias are the main parameters to affect the thickness distribution of the films.

  • PDF

A comparative study on mechanical properties of TiN and TiAlN films prepared by Arc Ion Plating Technique (아크 이온 플레이팅법에 의해 증착된 TiN과 TiAlN 박막의 기계적 특성 비교)

  • 윤석영;이윤복;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.199-205
    • /
    • 2002
  • TiN and TiAlN films were deposited on SKD 11 steel substrates by an arc ion plating (AIP) technique. The crystallinity and morphology for the deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties of both films were investigated through the indentation, impact, and wear test. Those films fairly adherent to SKD 11 steel substrate, showed hardness values of 2300 $\pm$ 100kg/$\textrm{mm}^2$ and 3200 $\pm$ 100kg/$\textrm{mm}^2$ with a load of 25g, respectively. During impact test, TiAlN films showed much superior impact wear resistance to TiN films. It could be suggested that the TiN films was failed relatively by plastic deformation with oxidation during impact test, while TiAlN films was failed by brittle fracture and resisted the oxidation by the impact energy. The friction coefficient of TiAlN films became lower than that of TiN films at high sliding speed condition although it was higher than that of TiN films at low speed. Therefore, TiAlN films was suggested to be more advantageous than TiN films for high speed machining fields.

The Effect of Mechanical Property of Tailor Welding Blank and Hot Press Forming Process by the Different Anti-oxidation Coating Treatment on Boron-steel Sheet (핫프레스포밍 공정에서 내산화 코팅처리가 TWB 용접부 특성에 미치는 영향)

  • Kim, Sang-Gweon;Lim, Ok-Dong;Lee, Jae-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.6
    • /
    • pp.283-291
    • /
    • 2012
  • In order to increase the anti-oxidation property during the tailor welding blanked hot press forming process for a high strength boron steel sheet, we performed a different coating method on the boron-steel sheet such as 87% Al - 13% Si and Fe - 8.87 Zn dipping plating procedure. However, during laser welding process, the Al-Si coated steel sheet has showed a low tensile strength and about half value of elongation than the original boron-steel sheet. Aluminum and silicon, elements of coating layer were diffused into the boron-steel matrix and have shown a low strength result than non-coated specimen. On the other hand, Zinc-coated boron-steel has expectedly showed a excellent tensile strength and micro-harness value in the welded area like original boron-steel.

A Study on the Large Deflection Behavior of Ship Plate with Secondary Buckling (2차좌굴을 포함하는 선체판의 대변형거동에 관한 연구)

  • 고재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.565-573
    • /
    • 1999
  • Hihg Tensile Steel enables to reduce the plate thickness comparing to the case when Mild Steel is used. From the economical view points this is very preferable since the reduction in the hull weight. however to use the High Tensile Steel effectively the plate thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling the flexural rigidity of the cross sect6ion of a ship's hull also decreases. This may lead to excessive deflection of the hull girder under longitudinal bending. In these cases a precise estimation of plate's behavior after buckling is necessary and nonliner analysis of isolated and stiffened plates is required for structural sys-tem analysis. In this connection this paper discusses nonlinear behaviour of thin plate under thrust. Based on the analytical method elastic large deflection analysis of isolated plate is perform and simple expression are derived to evaluated the inplane rigidity of plates subjected to uniaxial compression.

  • PDF

The Effect of Tin Ion-plating on the Bond Strength of Orthodontic Bracket (TiN Ion-Plating이 교정용 브라켓의 접착강도에 미치는 영향)

  • KIM, Seok-Yong;KWON, Oh-Won;KIM, Kyo-Han
    • The korean journal of orthodontics
    • /
    • v.27 no.1
    • /
    • pp.157-171
    • /
    • 1997
  • This study was conducted to see the effect of TiN ion-plating on the bond strength of orthodontic bracket. Three stainless-steel brackets with different base types were chosen; when TiN ion-plated brackets and non iorrplated brackets were bonded to the teeth, initial and long-term bond strength were measured, The observations oi bonding surface and failure sites through the scanning electron microscope were analysed and compared. The summary of this study was as follows; ${\cdot}$ When TiN ion-plating was not applied, the Micro-Loc type was the highest in bond strength atter 24 hours as $5.89{\pm}1.77$ MPa, followed by $4,27{\pm}1.12MPa$ for Foil Mesh type and $2.64{\pm}0.58MPa$ for Undercut type(P<0.05). ${\cdot}$ Under TiN ion-plating, the bond strength after 24 hours showed: Micro-Loc type $-6.26{\pm}1.51MPa$, Foil Mesh type $-7.45{\pm}2.01MPa$, Undercut type $-2.93{\pm}0.84MPa$. Unlike in the case of non ion-plating, Foil Mesh type showed a higher strength than Micro-Loc type, with Undercut type still showing the lowest bond strength(P<0.05). The bond strength, after 24 hours, increased in case of ion-plated in all 3 types, but a significant increase was shown only in Foil Mesh type(P<0.001). ${\cdot}$ Under a long-term immersion, regardless of ion or non ion-plating, bond strength in general increased over the initial bond strength(one day), with more stability. ${\cdot}$ Through scanning electron microscopic observation of bonding surface, it was found that, regardless of the bracket base type or the application of ion-plating, the resin was thoroughly spreaded into bracket base to form a solid bonding surface between the bracket and the tooth. This was also true in case of a long-term immersion. ${\cdot}$ The scanning electron microscopic observation of failure sites revealed diverse failure patterns.

  • PDF

A Study in the Heat Resistance Properties of STD61 Steel using the Surface Hardening Method (STD61 강의 내열특성향상을 위한 표면경화에 관한 연구)

  • Lee, Gu-Hyeon
    • 연구논문집
    • /
    • s.26
    • /
    • pp.121-132
    • /
    • 1996
  • The carburising surface modification treatment of the die steel has been used for improving wear resistance and heat cycle strength of the die and preventing a pitting on the surface because the carbides are forming in the matrix during carburising. Generally, the hot forging die was used after quenching-tempering treatment or nitriding after quenching-tempering treatment. The nitriding after carburising on the surface of a hot die steel and a wear resistance die steels was suggested by SOUCHARD, JACQUOT. and BUVRON. This surface modification treatment improved the adhesive and abrasive wear resistance and friction coefficient. The process was introduced to the forging die of stainless steel, titanium alloy steel, alloy and medium carbon steel and the physical properties of the die after the treatment were improved. The surface hardening treatment of the nitriding, the carburising, the boriding, and TD process were used to improved the life time of the forging die. Also, the coating process of PVD, CVD and PCVD were used and the hard chromium plating was occasionally used. Therefore, this study analyzed the effects of the carburising time and the conditions of nitriding on STD61 steel. The case depth, the surface hardness, the forming carbide size and shape during overcarburising process on the die steel were also examined.

  • PDF

Properties of Cr-N Films Prepared by the Arc-induced Ion Plating (아아크방전 유도형 이온플레이팅에 의한 Cr-N 피막의 특성)

  • Jeong, Jae In;Mun, Jong Ho;Hong, Jae Hwa;Gang, Jeong Su;Lee, Yeong Baek
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.24-24
    • /
    • 1991
  • Cr-N films were deposited on low-carbon steel sheets by the reactive arc-induced ion plating (AIIP). The influence of the deposition conditions (nitrogen pressure and substrate bias voltage) on the crystal orientation, morphology and microhardness of the Cr-N films has been investigated using x-ray diffractometer and scanning electron microscope. The impurities and contaminations on the surface and at the interface, and the layer-by-layer compositions of the film have been analyzed using scanning Auger multiprobe (SAM) and glow discharge spectroscope (GDS). The mixed state of Cr and Cr2N turned out to have a fine fibrous structure. The Cr2N films were deposited at a wide range of nitrogen flow rates. The orientations of Cr2N films were mainly (110) and (111), and the intensity of the (111) peak increased as the substrate bias voltage increased. The micorstructure of the Cr2N film was dense and no columnar structure was observed. The films in the mixed state of Cr2N and CrN were also dense without columnar structure. The maximum microhardness of the Cr-N films was 2400 kg/$\textrm{mm}^2$ at 10gf load.

Properties of Cr-N Films Prepared by the Arc-induced Ion Plating (아아크방전 유도형 이온플레이팅에 의한 Cr-N 피막의 특성)

  • 정재인;문종호;홍재화;강정수;이영백
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.1
    • /
    • pp.24-33
    • /
    • 1992
  • Cr-N films were deposited on low-carbon steel sheets by the reactive arc-induced ion plating (AIIP). The influence of the deposition conditions (nitrogen pressure and substrate bias voltage) on the crystal orientation, morphology and microhardness of the Cr-N films has been investigated using x-ray diffractometer and scanning electron microscope. The impurities and contaminations on the surface and at the interface, and the layer-by-layer compositions of the film have been analyzed using scanning Auger multiprobe (SAM) and glow discharge spectroscope (GDS). The mixed state of Cr and Cr₂N turned out to have a fine fibrous structure. The Cr₂N films were deposited at a wide range of nitrogen flow rates. The orientations of Cr₂N films were mainly (110) and (111), and the intensity of the (111) peak increased as the substrate bias voltage increased. The microstructure of the Cr₂N film was dense and no columnar structure was observed. The films in the mixed state of Cr₂N and CrN were also dense without columnar structure. The maximum microhardness of the Cr-N films was 2400 kg/㎟ at 10 gf load.

  • PDF