• Title/Summary/Keyword: steel plates

Search Result 1,473, Processing Time 0.031 seconds

The use of ferrocement in the construction of squat grain silos

  • Topcuoglu, Kivanc;Unal, Halil Baki
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.53-68
    • /
    • 2016
  • In this study, an investigation is made from the statics and economic aspects of the possibility of using the composite material ferrocement on the surfaces of squat cylindrical grain silos. For this purpose, the geometry of two model silos, each of height 5 m and diameter 5 m and 12.5 m, was designed. Five different reinforced plates of 10 and 20 mm thickness were produced to research the most suitable ferrocement plates to be used on the surface of these silos. Most durable reinforcement type for covering the silo surface was determined by pressure and bending tests. Grade 30 and Grade 55 steel plates were also considered for use in covering steel-coated silos. In the statics analysis performed with SAP2000, the least plate thicknesses needed for silos surfaced with Grade 30 and Grade 55 steel were found to be 6.20 mm and 4.70 mm respectively for silos of diameter 5 m, and 6.70 mm and 5.00 mm for silos of diameter 12.5 m. In the economic analysis, it was found that 20 mm thick Type 4 (with a wire diameter of 0.30 mm and a mesh aperture of $2mm{\times}2mm$ square type) reinforced ferrocement surfacing material was 5.6-6.1 times more economical than Grade 30 steel surfacing material and 4.4-4.7 times more economical than using Grade 55 steel. These results show that ferrocement can be used in place of steel from the point of view both of statics and economy.

Development of Resistance Spot Weldability Estimation Using Lobe Diagram for Steel Plate of Automobiles (로브곡선을 이용한 자동차용 신강재의 저항 점 용접성 평가 기술 개발)

  • Kim, Tae-Hyung;Lee, Dong-Ock;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.59-65
    • /
    • 2005
  • The resistance spot welding is one of the most commonly used welding process for joining the sheet metal in automotive manufacturing process due to higher deposition rates and higher economy achieved. Control variables in the resistance spot welding for achieving high quality are welding current, welding force and welding time. Generally at the manufacturing scene, welding current Vs welding time lobe diagram is used to estimate weldability because controlling welding force is not practical due to economical reasons. However new automotive steel plates have been developed to make lightweight automobiles and to improve resistance against rusting. Also the weldability of these steel plates are worst than the existing steel plates because of changing bare metal and surface plating effect. In consequence of above mentioned reasons, it is necessary to use welding force to present the lobe diagram. In this study, we obtained the welding force Vs welding current lobe diagram for commonly used GA steel plate and found that the second order repression model of tensile shear strength was useful in reducing the number of experiments, and the indentation, and thickness change during welding were used as a response to estimate quantitatively expulsion.

Behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 2: Evaluation of theoretical strength

  • Zhu, Y.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.563-580
    • /
    • 2010
  • Composite beams using bolts to attach steel plates to the side faces of existing reinforced concrete (RC) coupling beams can enhance both their strength and deformability. The behavior of those composite beams differs substantially from the behavior of typical composite beams made up of steel beams and concrete slabs. The former are subjected to longitudinal, vertical and rotational slips, while the latter only involve longitudinal slip. In this study, a mixed analysis method was adopted to develop the fundamental equations for accurate prediction of the load-carrying capacity of steel plate strengthened RC coupling beams. Then, a rigid plastic analysis technique was used to cope with the full composite effect of the bolt group connections. Two theoretical models for the determination of the strength of medium-length plate strengthened coupling beams based on mixed analysis and rigid plastic methods are presented. The strength of the strengthened coupling beams is derived. The vertical and longitudinal slips of the steel plates and the shear strength of the anchor-bolt connection group is considered. The theoretical models are validated by the available experimental results presented in a companion paper. The strength of the specimens predicted from the mixed analysis model is found to be in good agreement with that from the experimental results.

A Study on the Secondary Buckling Behavior of Ship Plate (선체판부재의 2차좌굴거동에 관한 연구)

  • 고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 1996
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The main portion of ship structure is usually composed of stiffened plates. In these structures, plate buckling is one of the most important design criteria and buckling load may usually be obtained as an eigenvalue solution of the governing equations for the plate. To use the high tensile steel plate effectively, its thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. When the panel elastic buckling is allowed, it is necessary to get precise understandings about the post-buckling behaviour of thin plates. It is well known that a thin flat plate undergoes secondary buckling after initial buckling took place and the deflection of the initial buckling mode was developed. From this point of view, this paper discusses the post-buckling behaviour of thin plates under thrust including the secondary buckling phenomenon. Series of elastic large deflection analyses were performed on rectangular plates with aspect ratio 3.6 using the analytical method and the FEM.

  • PDF

Strain Energy Characterics of Antisymmetric Angle-Ply Laminated Plates (역대칭 Angle-Ply 적층판의 변형에너지 특성에 관한 연구)

  • Park, Sung Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.691-700
    • /
    • 2000
  • A powerful analytical procedure and strain energy analysis to investigate the free vibration of antisymmetric angle-ply laminated plates, having one pair of opposite edges simply supported, are develped on the basis of the Yang, Norris and Stavsky (YSN) theory. The equation of motion of the plate are solved by the use of collocation method. A range of results are presented for plates to show the effects of modulus ratio and number of layers on natural frequency. In addition, an analysis of the strain energy distributions is used as an aid for the better understanding of the vibration characteristics of the plates.

  • PDF

The study on corrosion fatigue and cathodic protection of the steel plates used for the shipbuilding (조선용강재의 부식피로와 전기방식에 관한 연구)

  • 전대희;김원녕;이의호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.126-142
    • /
    • 1985
  • The plane bending corrosiion fatigue test for the welded metal parats was performed in the air and in the natural sea water with and without applying cathodic protection. The specimens tested were the weld of SM41 steel plates, SM58 steel plates and of SM41 to SM58, which were all prepared by submerged arc welding. The main results obtained from the experiment are summarized as follows: (1) In case with SM41 and SM58 steel plates, lower value of impact strength, higher value of hardness and more noble electrode potential were observed in the welded metal part than in the HAZ and base metal. Also the lowest hardness zone in the HAZ was observed with SM58 which was not found with SM41. In case with weld specimen of SM41 to SM58, the impact strength and the electrode potential of the welded metal part showed again the lowest and most noble value but the hardness value was located between those of SM41 and SM58 base metal. (2) In the fatigue test, the specimens tested in the air and under the cathodic protection were both cracked in a purely mechanical mode, but the specimens tested without cathodic protection were cracked by the combination of mechanical fracture and electro-chemical corrosion. (3) The corrosion fatigue limit of the welded metal parts of the specimen was increased by the cathodic protection. As the protection potential was varied down to -800 mV vs. SCE the fatigue limit was increased to the value tested in the air, and the maximum fatigue limit appeared at the -1, 000 - -1, 200 mV vs. SCE. However, as the protection potential was further decreased below -1, 200 mV vs.SCE, the fatigue limit of weld of SM58 and of SM41-SM58 joining was decreased but the limit was almost constant in the case of weld of SM41. (4) It is suggested that when designing steel ship the corrosion fatigue limit of welded metal parts should be stressed as a designing strength of the structure of steel ship in addition to the conventional basis considering simply tensile strength of steel and safety factor.

  • PDF

Numerical study on buckling of steel web plates with openings

  • Serror, Mohammed H.;Hamed, Ahmed N.;Mourad, Sherif A.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1417-1443
    • /
    • 2016
  • Cellular and castellated steel beams are used to obtain higher stiffness and bending capacity using the same weight of steel. In addition, the beam openings may be used as a pass for different mechanical fixtures such as ducts and pipes. The aim of this study is to investigate the effect of different parameters on both elastic and inelastic critical buckling stresses of steel web plates with openings. These parameters are plate aspect ratio; opening shape (circular or rectangular); end distance to the first opening; opening spacing; opening size; plate slenderness ratio; steel grade; and initial web imperfection. The web/flange interaction has been simplified by web edge restraints representing simply supported boundary conditions. A numerical parametric study has been performed through linear and nonlinear finite element (FE) models, where the FE results have been verified against both experimental and numerical results in the literature. The web plates are subject to in-plane linearly varying compression with different loading patterns, ranging from uniform compression to pure bending. A buckling stress modification factor (${\beta}$-factor) has been introduced as a ratio of buckling stress of web plate with openings to buckling stress of the corresponding solid web plate. The variation of ${\beta}$-factor against the aforementioned parameters has been reported. Furthermore, the critical plate slenderness ratio separating elastic buckling and yielding has been identified and discussed for two steel grades of DIN-17100, namely: ST-37/2 and ST-52/3. The FE results revealed that the minimum ${\beta}$-factor is 0.9 for web plates under uniform compression and 0.7 for those under both compression and tension.

Behavior of fully- connected and partially-connected multi-story steel plate shear wall structures

  • Azarafrooza, A.;Shekastehband, B.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.311-324
    • /
    • 2020
  • Until now, a comparative study on fully and partially-connected steel shear walls leading to enhancing strength and stiffness reduction of partially-connected steel plate shear wall structures has not been reported. In this paper a number of 4-story and 8-story steel plate shear walls, are considered with three different connection details of infill plate to surrounding frame. The specimens are modeled using nonlinear finite element method verified excellently with the experimental results and analyzed under monotonic loading. A comparison between initial stiffness and shear strength of models as well as percentage of shear force by model boundary frame and infill plate are performed. Moreover, a comparison between energy dissipation, ductility factor and distribution of Von-Mises stresses of models are presented. According to the results, the initial stiffness, shear resistance, energy dissipation and ductility of the models with beam-only connected infill plates (SSW-BO) is found to be about 53%, 12%, 15% and 48% on average smaller than those of models with fully-connected infill plates (SPSW), respectively. However, performance characteristics of semi-supported steel shear walls (SSSW) containing secondary columns by simultaneously decreasing boundary frame strength and increasing thickness of infill plates are comparable to those of SPSWs. Results show that by using secondary columns as well as increasing thickness of infill plates, the stress demands on boundary frame decreases substantially by as much as 35%. A significant increase in infill plate share on shear capacity by as much as 95% and 72% progress for the 4-story SSW-BO and 8-story SSSW8, respectively, as compared with non-strengthened counterparts. A similar trend is achieved by strengthening secondary columns of 4-story SSSW leading to an increase of 50% in shear force contribution of infill plate.

Compressive performance with variation of yield strength and width-thickness ratio for steel plate-concrete wall structures

  • Choi, Byong-Jeong;Kim, Won-Ki;Kim, Woo-Bum;Kang, Cheol-Kyu
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.473-491
    • /
    • 2013
  • The primary objectives of this paper are to describe the buckling patterns and to determine the squash load of steel plate-concrete (SC) walls. The major variables in this study were the width-thickness (B/t) ratio and yield strength of surface steel plates. Six SC walls were tested, and the results include the maximum strength, buckling pattern of steel plates, strength of headed studs, and behavior of headed studs. Based on the test results, the effects of the B/t ratio on the compressive strength are also discussed. The paper also presents recommended effective length coefficients and discusses the effects of varying the yield strength of the steel plate, and the effects of headed studs on the performance of SC structures based on the test results and analysis.

The Local Behavior of Stiffened Plates with Open Ribs Subject to a Concentrated Load (집중하중을 받는 개단면 리브 보강판의 국부 거동)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.593-604
    • /
    • 2005
  • In this paper, the parametric study on the local displacement and the local moment due to a concentrated load is performed for stiffened plates with open ribs and the orthotropic rigidity ratio of stiffened plates is selected as the parameter. For estimating the local behavior, stiffened plates loaded on the center of plates between the ribs were considered and for the global behavior, stiffened plates loaded on the rib at the center of plates were analyzed. The Analyzed results for the local behavior of stiffened plates show that the increasing ratio of the local moment according to rib sizes is constant regardless of rib spaces and the ratio of the local displacement to the global displacement can be expressed as a function of the rib space and the rigidity ratio. The application of functions to examples shows good accuracy in comparison with the local behavior of stiffened plates loaded on the center of plates and the application to the orthotropic analysis of stiffened plates improves accuracy. Therefore, using functions proposed in this study, the local behavior can easily be estimated from the global behavior of stiffened plates with open ribs.