• 제목/요약/키워드: steel plate shear panels

검색결과 27건 처리시간 0.023초

스트립 모델을 이용한 강판 전단패널의 소성 해석 (Plastic Analysis of Steel Plate Shear Panels using Strip Model)

  • 이명호;문태섭
    • 한국강구조학회 논문집
    • /
    • 제18권1호
    • /
    • pp.71-80
    • /
    • 2006
  • 강판 전단패널의 거동이 일반연강 (S400) 을 이용한 실험 및 해석으로 고찰되었다. 강판 전단패널은 작은 하중에서 좌굴을 하지만, 패널의 전단극한강도는 인장력 작용에 의한 강판 전단패널의 좌굴후 강도에 의해 좌우된다. 그러나, 설계상에서 강판 전단패널의 성능은 강판 전단패널의 탄성좌굴강도에 국한된다. 캐나다 극한강도 설계 규준 (CAN/CSA-S16.1-94)은 스트립 모델을 이용한 박강판 전단패널의 해석을 위한 절차를 규정하고 있다. 본 논문에서는 실험결과와 스트립모델 해석 결과를 이용하여 강판 전단패널의 구조성능을 평가하였다.

Seismic behavior of thin cold-formed steel plate shear walls with different perforation patterns

  • Monsef Ahmadi, H.;Sheidaii, M.R.;Tariverdilo, S.;Formisano, A.;De Matteis, G.
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.377-388
    • /
    • 2021
  • Thin perforated Steel Plate Shear Walls (SPSWs) are among the most common types of seismic energy dissipation systems to protect the main boundary components of SPSWs from fatal fractures in the high-risk zones. In this paper, the cyclic behavior of the different circular hole patterns under cyclic loading is reported. Based on the experimental results, it can be concluded that a change in the perforation pattern of the circular holes leads to a change in the locations of the fracture tendency over the web plate, especially at the plate-frame interactions. Accordingly, the cyclic responses of the tested specimens were simulated by finite element method using the ABAQUS package. Likewise, perforated shear panels with a new perforation pattern obtained by implementing Topology Optimization (TO) were proposed. It was found that the ultimate shear strength of the specimen with the proposed TO perforation pattern was higher than that of the other specimens. In addition, theoretical equations using the Plate-Frame Interaction (PFI) method were used to predict the shear strength and initial stiffness of the considered specimens. The theoretical results showed that the proposed reduced coefficients relationships cannot accurately predict the shear strength and initial stiffness of the considered perforated shear panels. Therefore, the reduced coefficients should be adopted in the theoretical equations based on the obtained experimental and numerical results. Finally, with the results of this study, the shear strength and initial stiffness of these types of perforated shear panels can be predicted by PFI method.

수평보강재가 있는 판형복부판의 극한전단거동에 관한 실험연구 (Experimental Study on Ultimate Shear Behaviour of Longitudinally Stiffened Plate Girder Web Panels)

  • 이명수
    • 한국강구조학회 논문집
    • /
    • 제11권2호통권39호
    • /
    • pp.167-179
    • /
    • 1999
  • 판형복부판의 좌굴강도를 높이기 위하여 수평보강재나 수직보강재를 대는 방법이 많이 적용되고 있다. 경제적인 판형의 설계를 위하여 복부판의 두께를 얇게 하는 대신, 복부판의 전단강도를 높이기 위하여 수직보강재를 사용하게된다. 수직보강재가 있는 복부판의 극한전단강도의 산정에 관한 연구는 1960년 초반부터 활발하게 진행되어 왔고, 이 결과가 미국의 AASHTO 시방서(1973)와 영국의 British Standard(1983)에 처음 반영되어 현재에 이르고 있다. 수평보강재의 주 역할은 휨응력에 의한 복부판의 좌굴강도를 높이고 횡변위를 억제하는 것이지만, 부수적으로 전단강도를 증가시키는 효과가 있는 것으로 알려지고 있다. 하지만, 이에 대한 연구의 부족으로 인하여 수평보강재가 복부판의 극한전단강도에 미치는 영향이 실제 설계시 반영되지 않고 있다. 본 연구에서는 실험을 통하여 수평보강재가 판형의 극한전단거동에 미치는 영향을 조사하고 이를 기존의 이론들과 비교 검토하였다.

  • PDF

Parametric study of shear strength of CFRP strengthened end-web panels

  • Shalaby, Haitham A.;Hassan, Maha M.;Safar, Sherif S.
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.159-172
    • /
    • 2019
  • Strengthening of civil infrastructure with advanced composites have recently become one of the most popular methods. The use of Fiber Reinforced Polymer (FRP) strips plates and fabric for strengthening of reinforced concrete structures has well established design guidelines and standards. Research on the application of FRP composites to steel structures compared to concrete structures is limited, especially for shear strengthening applications. Whereas, there is a need for cost-effective system that could be used to strengthen steel high-way bridge girders to cope with losses due to corrosion in addition to continuous demands for increasing traffic loads. In this study, a parametric finite element study is performed to investigate the effect of applying thick CFRP strips diagonally on webs of plate girders on the shear strength of end-web panels. The study focuses on illustrating the effect of several geometric parameters on nominal shear strength. Hence, a formula is developed to determine the enhancement of shear strength gained upon the application of CFRP strips.

Prefabricated-HSPRCC panels for retrofitting of existing RC members-a pioneering study

  • Bedirhanoglu, Idris
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.1-25
    • /
    • 2015
  • The main goal of this study was to develop a convenient strengthening technique for retrofitting of reinforced concrete members. For this purpose a new retrofitting material so-called prefabricated-HSPRCC (high performance steel plate reinforced cementitious composite) panel was developed by using high performance concrete and perforated steel plate. Prefabricated-HSPRCC composes advantages of steel and high performance concrete. The prefabricated-HSPRCC panels were either only bonded on the specimens using epoxy mortar or anchored to the specimen by steel bolts as well as bonding. Effect of different variations such as prefabricated-HSPRCC panel thicknesses, steel plate thicknesses, puncture orientation of perforated steel plate, existence of anchorage etc. were studied through a simple experimental work. The behaviour of the specimens under vertical point load was also studied by using simple mechanics. The retrofitted specimens were found to exhibit much better performance both in terms of strength and deformation capability. The anchorage application was found to positively affect this improved performance. Furthermore, as a result of the tests the best parameters of prefabricated-HSPRCC plate for improving strength and deformation capacities were determined.

Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings

  • Shariati, Mahdi;Faegh, Shervin Safaei;Mehrabi, Peyman;Bahavarnia, Seyedmasoud;Zandi, Yousef;Masoom, Davood Rezaee;Toghroli, Ali;Trung, Nguyen-Thoi;Salih, Musab NA
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.569-581
    • /
    • 2019
  • Corrugated steel plate shear wall (CSPSW) as an innovative lateral load resisting system provides various advantages in comparison with the flat steel plate shear wall, including remarkable in-plane and out-of-plane stiffnesses and stability, greater elastic shear buckling stress, increasing the amount of cumulative dissipated energy and maintaining efficiency even in large story drifts. Employment of low yield point (LYP) steel web plate in steel shear walls can dramatically improve their structural performance and prevent early stage instability of the panels. This paper presents a comprehensive structural performance assessment of corrugated low yield point steel plate shear walls having circular openings located in different positions. Accordingly, following experimental verification of CSPSW finite element models, several trapezoidally horizontal CSPSW (H-CSPSW) models having LYP steel web plates as well as circular openings (for ducts) perforated in various locations have been developed to explore their hysteresis behavior, cumulative dissipated energy, lateral stiffness, and ultimate strength under cyclic loading. Obtained results reveal that the rehabilitation of damaged steel shear walls using corrugated LYP steel web plate can enhance their structural performance. Furthermore, choosing a suitable location for the circular opening regarding the design purpose paves the way for the achievement of the shear wall's optimal performance.

Racking shear resistance of steel frames with corner connected precast concrete infill panels

  • Hoenderkamp, J.C.D.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1403-1419
    • /
    • 2015
  • When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on the quality, quantity and location of the discrete interface connections. This paper presents preliminary experimental and finite element results of an investigation into the composite behaviour of a square steel frame with a precast concrete infill panel subject to lateral loading. The panel is connected at the corners to the ends of the top and bottom beams. The Frame-to-Panel-Connection, FPC4 between steel beam and concrete panel consists of two parts. A T-section with five achor bars welded to the top of the flange is cast in at the panel corner at a forty five degree angle. The triangularly shaped web of the T-section is reinforced against local buckling with a stiffener plate. The second part consists of a triangular gusset plate which is welded to the beam flange. Two bolts acting in shear connect the gusset plate to the web of the T-section. This way the connection can act in tension or compression. Experimental pull-out tests on individual connections allowed their load deflection characteristics to be established. A full scale experiment was performed on a one-storey one-bay 3 by 3 m infilled frame structure which was horizontally loaded at the top. With the characteristics of the frame-to-panel connections obtained from the experiments on individual connections, finite element analyses were performed on the infilled frame structures taking geometric and material non-linear behaviour of the structural components into account. The finite element model yields reasonably accurate results. This allows the model to be used for further parametric studies.

Effect of stiffeners on steel plate shear wall systems

  • Rahmzadeh, Ahmad;Ghassemieh, Mehdi;Park, Yeonho;Abolmaali, Ali
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.545-569
    • /
    • 2016
  • Stiffeners have widely been used in lateral load resisting systems to improve the buckling stability of shear panels in steel frames. However, due to major differences between plate girders and steel plate shear walls (SPSWs), use of plate girder equations often leads to uneconomical and, in some cases, incorrect design of stiffeners. Hence, this paper uses finite element analysis (FEA) to describe the effect of the rigidity and arrangement of stiffeners on the buckling behavior of plates. The procedures consider transverse and/or longitudinal stiffeners in various practical configurations. Subsequently, curves and formulas for the design of stiffeners are presented. In addition, the influence of stiffeners on the inward forces subjected to the boundary elements and the tension field angle is investigated as well. The results indicate that the effective application of stiffeners in SPSW systems not only improves the structural behavior, such as stiffness, overall strength and energy absorption, but also leads to a reduction of the forces that are exerted on the boundary elements.

SC구조 평판의 면내전단내력 평가 (Evaluation of Steel Plate Reinforced Concrete Panels under In-plane Shear)

  • 이명재;이현욱;진성찬
    • 한국강구조학회 논문집
    • /
    • 제20권4호
    • /
    • pp.571-581
    • /
    • 2008
  • 최근 공기단축, 인건비절감 및 시공성 향상을 위한 간편한 시공법으로 그 구조적 성능이 우수한 SC구조시스템이 제안되었다. 이 연구에서는 SC구조 기술의 전반적인 연구의 일환으로 기본적인 SC구조 면내 전단력에 대한 거동특성을 파악함과 동시에 평판에 순수면내전단력을 가력하는 방법에 대해 타당성 검토를 병행한다. 특히 SC구조의 거동특성 중 순전단응력상태 및 축력과 전단응력이 동시에 작용하는 상황에서 면내전단에 대한 내력과 변형 등 기본적 역학특성 및 구조적 성능을 파악하고 평판 면내전단가력 방법을 제안하는 것이다. SC구조 평판전단내력실험을 통해 강재와 콘크리트의 일체 거동을 통한 평판의 내력 상승 및 축력의 유무에 따른 내력 상승을 확인하였으며, 전단력에 의한 평판의 파괴 양상을 파악하였다. 또한 평판에 순수 전단력만을 가력하기 위한 4힌지 프레임에 의한 평판전단내력 실험방법의 가능성 또한 확인하였다.

Hysteretic behavior of perforated steel plate shear walls with beam-only connected infill plates

  • Shekastehband, Behzad;Azaraxsh, Ali A.;Showkati, Hossein
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.505-521
    • /
    • 2017
  • The steel plate shear wall with beam-only connected infill plate (SSW-BO) is an innovative lateral load resisting system consisting of infill plates connected to surrounding beams and separated from the main columns. In this research, the effects of perforation diameter as well as slenderness ratios of infill plates on the hysteresis behavior of SSW-BO systems were studied experimentally. Experimental testing is performed on eight one-sixth scaled one-story SSW-BO specimens with two plate thicknesses and four different circular opening ratios at the center of the panels under fully reversed cyclic quasi-static loading in compliance with the SAC test protocol. Strength, stiffness, ductility and energy absorption were evaluated based on the hysteresis loops. It is found that the systems exhibited stable hysteretic behavior during testing until significant damage in the connection of infill plates to surrounding beams at large drifts. It is also seen that pinching occurred in the hysteresis loops, since the hinge type connections were used as boundaries at four corners of surrounding frames. The strength and initial stiffness degradation of the perforated specimens containing opening ratio of 0.36 compared to the solid one is in the range of 20% to 30% and 40% to 50%, respectively.