• Title/Summary/Keyword: steel plate deck

Search Result 163, Processing Time 0.023 seconds

An Experimental Evaluation of Bending and Shear Resisting Strengths for Wire-Integrated Deck Plate System using Lightweight Concrete (경량콘크리트를 사용한 철선일체형 바닥구조의 휨내력 및 전단내력 실험적 평가)

  • Lee, Seong-Hui;Bang, Jung-Seok;Won, Yong-An;Ryoo, Jae-Yong;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.275-282
    • /
    • 2011
  • A recent development of seismic design, which is required among environmentally friendly members, increased the concern on light-weight concrete. Extending around the building, the structural design which is applied for light-weight concrete has been increased. This study therefore evaluates the bending resistance and the shear resistance involved using four specimens that were manufactured and tested. The parameters used in this study exist. This study investigates the structural performance of composite slab using light-weight concrete with KCI (2007).

Study of the design and mechanical performance of a GFRP-concrete composite deck

  • Yang, Yong;Xue, Yicong;Yu, Yunlong;Liu, Ruyue;Ke, Shoufeng
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.679-688
    • /
    • 2017
  • A GFRP-concrete composite bridge deck is presented in this paper. This composite deck is composed of concrete and a GFRP plate and is connected by GFRP perfobond (PBL) shear connectors with penetrating GFRP rebar. There are many outstanding advantages in mechanical behavior, corrosion resistance and durability of this composite deck over conventional reinforced concrete decks. To analyze the shear and flexural performance of this GFRP-concrete composite deck, a static loading experiment was carried out on seven specimens. The failure modes, strain development and ultimate bearing capacity were thoroughly examined. Based on elastic theory and strain-based theory, calculation methods for shear and flexural capacity were put forward and revised. The comparison of tested and theoretical capacity results showed that the proposed methods could effectively predict both the flexural and shear capacity of this composite deck. The ACI 440 methods were relatively conservative in predicting flexural capacity and excessively conservative in predicting shear capacity of this composite deck. The analysis of mechanical behavior and the design method can be used for the design of this composite deck and provides a significant foundation for further research.

A Study to Evaluate Performance of Poly-Urethane Polymer Concrete for Long-Span Orthotropic Steel Bridge (장경간 강바닥판 케이블교량에 적용하기 위한 폴리우레탄 폴리머콘크리트의 공용특성 연구)

  • Park, Heeyoung;Lee, Junghun;Kwak, Byeongseok;Choi, Iehyun;Kim, Taewoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES: The purpose of this study is to evaluate physical properties, durability, fatigue resistance, and long-term performance of poly-urethane concrete (PU) which can be possible application of thin layer on long-span orthotropic steel bridge and to check structural stability of bridge structure. METHODS : Various tests of physical properties, such as flexural strength, tensile strength, bond strength and coefficient of thermal expansion tests were conducted for physical property evaluation using two types of poly urethane concrete which have different curing time. Freezing and thawing test, accelerated weathering test and chloride ion penetration test were performed to evaluate the effect of exposed to marine environment. Beam fatigue test and small scale accelerated pavement test were performed to assess the resistance of PU against fatigue damage and long-term performance. Structural analysis were conducted to figure out structural stability of bridge structure and thin bridge deck pavement system. RESULTS: The property tests results showed that similar results were observed overall however the flexural strength of PUa was higher than those of PUb. It was also found that PU materials showed durability at marine environment. Beam fatigue test results showed that the resistances of the PUa against fatigue damage were two times higher than those of the PUb. It was found form small scale accelerated pavement test to evaluate long-term performance that there is no distress observed after 800,000 load applications. Structural analysis to figure out structural stability of bridge structure and thin bridge deck pavement system indicated that bridge structures were needed to increase thickness of steel deck plate or to improve longitudinal rib shape. CONCLUSIONS: It has been known that the use of PU can be positively considered to thin layer on long-span orthotropic steel bridge in terms of properties considered marine environment, resistance of fatigue damage and long-term performance.

Numerical Study of Lightweight FRP Bridge Deck System induced by Thermal Stress by Fire (화재 발생시 열응력에 의한 복합재료 과량 시스템의 거동에 관한 연구)

  • Jung Woo-Young;Lee Hyung-Kil;Park Hui-Kwang;Shim In-Seob;Song Young-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.928-931
    • /
    • 2006
  • Due to their light weight, high stiffness-to-weight and strength-to-weight ratios, and potentially high resistance to environmental degradation, resulting in lower life-cycle costs, polymer composites, are increasingly being considered for use in civil infrastructure applications. Recently, an FRP deck has been installed on a state highway, located in New York State. In this study, a thermal stress analysis was conducted using finite element method to study failure mechanisms of the superstructure. This analysis evaluated small and large temperature gradient effects on the FRP deck considering lightweight of FRP deck and ply orientations at the interface between steel girders and FRP deck Finite element model was verified using the load tests of the bridge deck. Finally, the analytical results shows the possible failure mechanism of FRP deck under various temperature changes and its corresponding index is suddenly varied depending on the rapid change of temperature on the deck plate.

  • PDF

A Study on the Dynamic Characteristics of Composite Deck Plate According to the Modification of Boundary Conditions (경계조건의 조절에 따른 합성 데크플레이트 슬래브의 거동특성에 관한 연구)

  • 김우영;정은호;엄철환;김희철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.371-376
    • /
    • 1998
  • As the requirement of high-rise buildings in big cities increases, steel structural system becomes more popular in spite of the relatively higher material cost compared to that of the concrete structural system. Most of the steel structure adopts metal deck floor system because of the easiness in construction. However, the metal deck floor system has a weakness on vibration which became very important factor in office buildings, hotels and residential buildings as the more sensitive machines being used. Therefore, most, of the building codes in many countries restrict the natural frequency of the each floor should be higher than or equal to 15 Hz. Floor vibration of the KEM deck composite floor system which has been , developed recently from the engineers and scientists in Korea was measured. Also, the simplified analytical derivation of natural frequency for each floor was studied according to the measured natural frequency for each different boundary condition of the floor. As the length of the slab gets bigger, the natural frequency of the slab becomes lower even though the structural designer still considers it as a one-way slab.

  • PDF

Flexural Capacity of the Encased(Slim Floor) Composite Beam with Deep Deck Plate (매입형(슬림플로어) 합성보의 휨성능 평가 -춤이 깊은 데크플레이트와 비대칭 H형강 철골보-)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.235-245
    • /
    • 2004
  • The advantages of composite construction are now well understood in terms of structural economy, good performance in service, and ease of construction. However, these conventional composite construction systems have some problems in application to steel framed buildings due to their large depth. So, in this study we executed an experimental test with the "Slim Floor"system which could reduce the overall depth of composite beam. Slim Floor system is a method of steel frame multi-story building construction in which the structural depth of each floor is minimized by incorporating the steel floor beams within the depth of the concrete floor slab. Presented herein is an experimental study that focuses on the flexural behaviour of the partially connected slim floor system with asymmetric steel beams encased in composite concrete slabs. Eight full-scale specimens were constructed and tested in this study with different steel beam height, slab width, with or without shear connection and concrete topping thickness. Observations from experiments indicated that the degree of shear connection without additional shear connection was $0.53{\sim}0.95$ times that of the full shear connection due to inherent mechnical and chemical bond stress.

An Experimental Study on the Structural Performance of Lateral Resistance in Steel Elevator Pit (강재엘리베이터 피트 측압저항 구조성능에 관한 실험적 연구)

  • Hong, Seong-Uk;Kim, Tae-Soo;Baek, Ki-Youl
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • Steel elevator pit was developed for the purpose of minimizing the excavation, simplifying the construction of the frame and economical efficiency by improving the problems that occurred in the existing reinforced concrete. It is common to apply conventional RC method through excavation to underground structures such as underground floor collector well and elevator pit. In recent years, the use of steel collector well and steel elevator pits to reduce construction costs by minimizing the materials of steel and concrete has been continuously increasing. The steel elevator pit is an underground structure and then the performance of the welding part and the structure system is important. Specimen with only steel plate and concrete without studs could support the load more than 3 times than the specimen with deck only. Therefore, even if there is no stud, the deck (steel plate) rib is formed and the effect of restraining the steel plate and the concrete during the bending action can be expected. However, since sudden fracture in the elevator pit may occur, stud bolt arrangement is necessary for the composite effect of steel plate and concrete. It is expected that the bending strength can be expected to increase by about 15% or more depending with and without stud bolts.

Improvement of Flexural Performance for Deep-Deck Plate using Cap Plate (캡플레이트를 이용한 장스팬용 춤이 깊은 데크의 휨성능 개선)

  • Park, K.Y.;Nam, Y.S.;Choi, Y.H.;Kim, Y.H.;Choi, S.M.
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.555-567
    • /
    • 2013
  • Slim floor system using deep decks has been developed and employed in Europe to reduce the floor height of steel structures. Although long span buildings involving the issue of reducing floor height are being increasingly built in Korea, employing deep decks in more than 7m long span structures is likely to cause problems associated with excessive deflection. This study is applied to the long-span concrete casting of the deep deck plate usability of deflection due to bending and torsional instability of open cross-section, as a way to improve the problem of cap plates are suggested, and the optimum length of reinforcement and location are derived from theoretic estimation. The cap plates are placed on the deep decks with regular intervals to overcome the instability of open sections, improve the stiffness of the sections and control the deflection at the centers. The improvement in flexural capacity associated with the location of the cap plates and the length of reinforcement are verified through analysis and test.

Experimental Study on Bending and Shear Performance of Deck Type Void Slab with Trapezoidal Hollow Ball (사다리꼴 형상의 경량체를 가진 데크형 중공슬래브의 휨 및 전단성능에 대한 실험적 연구)

  • Kim, Pil Jung;Kim, Sang Mo;Park, Joon Hyuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.443-453
    • /
    • 2017
  • In this study, a trapezoidal hollow ball is used, instead of a spherical hollow ball commonly used in void slab, to secure the high hollow ratio in the deck type void slab. The bending and shear performance was measured with consideration for the shape change of the hollow ball. And to confirm the effect of deck plate and truss wire on shear performance, experiments were performed depending on the installation directions of the one-way deck plate. As a result, the bending performance of the deck type void slab with a trapezoidal hollow ball was similar to that of the void slab with a spherical hollow ball. However, according to the data of shear strength examined, the contribution of shear performance enhancement of the truss wire had a more effect on the shear performance of deck type void slab, rather than the influence by changing of the shape of hollow ball. In the previous studies, the shear strength is reduced to about 60%, due to the reduction of the effective section of concrete by installation of hollow ball. But in this experiment, the maximum load of specimen, in which the deck was installed in horizontal direction, so expected to have no influence on the shear performance, was only reduced to about 87%, due to the truss framework of truss wire.

An Analysis and Retrofit of U-rib Fatigue Cracks in the Steel Deck Bridge (강바닥판 교량의 U리브 피로균열 해석 및 보강)

  • Ryu, Duck-Yong;Jung, Hie-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.176-183
    • /
    • 2010
  • In the steel deck box girder bridges, the deck is composed of deck plate, longitudinal and lateral direction ribs. The bridge, that is considered in this study, has been used for about 40 years and, recently, several cracks were found in the connection area of U-ribs. Further, additional cracks were occurred after some lateral rib plates and longitudinal frames were attached for the purpose of reinforcement. Therefore, the connection method in the U-ribs reinforcement was changed from the bolting to the weldment to get rid of stress concentration and further cracking. In this study, the stress in the U-ribs connection was analysed numerically and variable amplitude stress for the real traffic loads was measured experimentally before and after the frame reinforcement. Finally, the effects of reinforcement method were investigated and discussed.