• Title/Summary/Keyword: steel panel

Search Result 533, Processing Time 0.027 seconds

Ultimate strength of initially deflected plate under longitudinal compression: Part I = An advanced empirical formulation

  • Kim, Do Kyun;Poh, Bee Yee;Lee, Jia Rong;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.247-259
    • /
    • 2018
  • In this study (Part I), an advanced empirical formulation was proposed to predict the ultimate strength of initially deflected steel plate subjected to longitudinal compression. An advanced empirical formulation was proposed by adopting Initial Deflection Index (IDI) concept for plate element which is a function of plate slenderness ratio (${\beta}$) and coefficient of initial deflection. In case of initial deflection, buckling mode shape, which is mostly assumed type in the ships and offshore industry, was adopted. For the numerical simulation by ANSYS nonlinear finite element method (NLFEM), with a total of seven hundred 700 plate scenarios, including the combination of one hundred (100) cases of plate slenderness ratios with seven (7) representative initial deflection coefficients, were selected based on obtained probability density distributions of plate element from collected commercial ships. The obtained empirical formulation showed good agreement ($R^2=0.99$) with numerical simulation results. The obtained outcome with proposed procedure will be very useful in predicting the ultimate strength performance of plate element subjected to longitudinal compression.

Mechanical model for seismic response assessment of lightly reinforced concrete walls

  • Brunesi, E.;Nascimbene, R.;Pavese, A.
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.461-481
    • /
    • 2016
  • The research described in this paper investigates the seismic behaviour of lightly reinforced concrete (RC) bearing sandwich panels, heavily conditioned by shear deformation. A numerical model has been prepared, within an open source finite element (FE) platform, to simulate the experimental response of this emerging structural system, whose squat-type geometry affects performance and failure mode. Calibration of this equivalent mechanical model, consisting of a group of regularly spaced vertical elements in combination with a layer of nonlinear springs, which represent the cyclic behaviour of concrete and steel, has been conducted by means of a series of pseudo-static cyclic tests performed on single full-scale prototypes with or without openings. Both cantilevered and fixed-end shear walls have been analyzed. After validation, this numerical procedure, including cyclic-related mechanisms, such as buckling and subsequent slippage of reinforcing re-bars, as well as concrete crushing at the base of the wall, has been used to assess the capacity of two- and three-dimensional low- to mid-rise box-type buildings and, hence, to estimate their strength reduction factors, on the basis of conventional pushover analyses.

A Study on the Surface Air-Void Reduction of High Performance Concrete (고성능 콘크리트의 표면기포 저감에 관한 연구)

  • Park, Sang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • In this study, reduction methods of surface air void were examined for high performance concrete having high viscosity. The effects of assumed influencing factors such as form types, form-coating materials, tamping equipments and methods were examined based on the tests on mock-up specimens made of high performance concrete. The test results can be summarized as follows: As for form types, the most favorable results were obtained when coated plywood form was used with panel-shape tamping equipments at the contact region with concrete, the second and the third being the water/air-permeable sheets and steel with coated plywood, respectively. As for tamping equipments, a vibrator with 6.5cm diameter was most effective. Finally, the shorter the tamping intervals, the better the reduction effect of surface air void. As a conclusion, an improved method was proposed to reduce surface air void and it was verified with the test result that only four air voids as large as $5{\sim}10mm$ are found in the are of $1m^2$.

Investigation on electrochemical performance of Al anode material for marine growth prevention system

  • Kim, Seong-Jong;Jang, Seok-Ki;Han, Min-Su;Lee, Seung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.968-973
    • /
    • 2014
  • Aluminum anode of marine growth prevention system for ship is installed in seachest or sea water strainer. The Al anode is connected to a control panel that feeds a current to the anode. The dissolved ions produced by the anode are transferred in sea water, spreads through the sea water pipe system and creates a protective film in the pipelines. Thereby, corrosion in pipeline system significantly is reduced. In application on condition as a steel ship, the big accident can be caused by the corrosion. Accordingly, in this research, we evaluated influence of applied current and flow velocity on electrochemical characteristics of Al anode for marine growth prevention system (MGPS). Based on the results of the erosion-cavitation experiments, cavitation rate increased greatly until 120 min. of the experimental time and decreased a little at the point of 180 min. where pit grew and merging occurred but showed a tendency of steadily increasing consumption rates. Based on the results of the Tafel analysis, compared to static states, corrosion current densities show a rapidly increasing tendency when flow occurred.

Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.273-283
    • /
    • 2018
  • Nonlinear low velocity impact response of sandwich beam with laminated composite face sheets and soft core is studied based on Extended High Order Sandwich Panel Theory (EHSAPT). The face sheets follow the Third order shear deformation beam theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the two dimensional elasticity is used for the core. The nonlinear Von Karman type relations for strains of face sheets and the core are adopted. Contact force between the impactor and the beam is obtained using the modified Hertz law. The field equations are derived via the Ritz based applied to the total energy of the system. The solution is obtained in the time domain by implementing the well-known Runge-Kutta method. The effects of boundary conditions, core-to-face sheet thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that each of these parameters have significant effect on the impact characteristics which should be considered. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The contact force histories predicted by EHSAPT are in good agreement with that obtained by experimental results.

Experimental study of rigid beam-to-box column connections with types of internal/external stiffeners

  • Rezaifar, Omid;Nazari, Mohammad;Gholhaki, Majid
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.535-544
    • /
    • 2017
  • Box sections are symmetrical sections and they have high moment of inertia in both directions, therefore they are good members in tall building structures. For the rigid connection in structures with box column continuity plates are used on level of beam flanges in column. Assembly of the continuity plates is a difficult and unreliable work due to lack of weld or high welding and cutting in the fourth side of column in panel zone, so the use of experimental stiffeners have been considered by researchers. This paper presented an experimental investigation on connection in box columns. The proposed connection has been investigated in four cases which contain connection without internal and external stiffeners(C-0-00), connection with continuity plates(C-I-CP), connection with external vase shape stiffener (C-E-VP) and connection with surrounding plates(C-E-SP). The results show that the connections with vase plates and surrounding plates can respectively increase the ultimate strength of the connection up to 366% and 518% than the connection without stiffeners, in case connection with the continuity plates this parameter increases about 39%. In addition, the proposed C-E-VP and C-E-SP connection provide a rigid and safe connection to acquire rigidity of 95% and 98% respectively. But C-I-CP connection is classified as semi-rigid connections.

Chinese Corporate Leverage Determinants

  • Ferrarini, Benno;Hinojales, Marthe;Scaramozzino, Pasquale
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.4 no.1
    • /
    • pp.5-18
    • /
    • 2017
  • Total debt in the People's Republic of China surged to nearly 290% as a ratio to GDP by the second quarter of 2016, mostly on account of non-financial corporate debt. The outpouring of credit to stem the impact of the global financial crisis accentuated industrial overcapacity in traditional sectors, such as steel, cement, and energy, while feeding asset bubbles in the property, equity and bond markets. At the Chinese corporate level, this has translated into weakened fundamentals and a fall in industrial profits, particularly of SOEs. As debtors struggle to service interest payments, non-performing loans (NPLs) have been on the rise. This paper assesses the financial fragility of the Chinese economy by looking at risk factors in the non-financial sector. We apply quantile regressions to a dataset containing all Chinese listed companies in Standard & Poor's IQ Capital database. We find higher sensitivity over time of corporate leverage to some of its key determinants, particularly for firms at the upper margin of the distribution. In particular, profitability increasingly acts as a curb on corporate leverage. At a time of falling profitability across the Chinese non-financial corporate sector, this eases the brake on leverage and may contribute to its continuing increase.

A Study on the Eco-Tecnique of EcoCenter - Focused on the Building Material and Solar System - (에코센터의 생태건축기술에 관한 연구 - 건축재료와 태양에너지활용시스템을 중심으로 -)

  • Choi, Young-Ho;Shim, Woo-Gab
    • KIEAE Journal
    • /
    • v.4 no.2
    • /
    • pp.65-72
    • /
    • 2004
  • Ecological architecture enables people to recycle and reuse architectural resources within the category of ecosystem and also to minimize the effect on environment in a whole process, including architectural planning, usage and exhaustion to use sustainable energies. Rammed earth wall construction method utilized in EcoCenter located in Crystalwaters ecological village in Austrailia is a good example, which maximizes its advantages and also covers its limits to use soil and wood as structural resources. In a case of wood, they used non-treated timber to minimize environmental load and utilized used materials in openings. In the roofs, aluminum coated steel which is plated with zinc collects rain effectively even though it is not regenerable. Nontoxic finishes and insulation in floor and ceiling with used papers are able to minimize its environmental load. Solar energy system applied in EcoCenter enables them to market extra energy with electricity companies as well as support needs of its own buildings to utilize photovoltaic panel system with PV panels. Passive solar system is planned effectively in heating and cooling to apply regenerative walls in a use of rammed earth wall construction and natural ventilation systems through openings.

Optimum Design for Frame Bracket of Electrical Panels for Improved Fatigue Strength (함정용 배전반의 피로강도 향상을 위한 프레임 브래킷의 최적설계)

  • Kim, Myung-Hyun;Choi, Jae-Young;Kang, Sung-Won;Chung, Ji-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.206-212
    • /
    • 2006
  • Structural reliability of electrical panels installed in naval vessels is of critical importance from structural performance viewpoint. The electrical panels may be exposed to vibration and fatigue loadings from internal and external sources as well as wave loadings which result into a crack and fracture due to the decrease of fatigue strength. It is also well known that welded joints including brackets within steel structures .such as vessels and bridges are vulnerable against such repeated loadings. This study introduces a preliminary result of the optimized shape of frame bracket consisting of electrical panels in navel vessels against fatigue loading and their fatigue life at brackets of electrical panels by means of hot spot stress and structural stress methods.

A study on improvement of wind-resistance characteristics of the structure supporting road sign (도로표지판 지지구조물의 내풍성능 향상에 관한 연구)

  • Son, Yong-Chun;Park, Su-Yeong;Im, Jong-Guk;Sin, Min-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.485-488
    • /
    • 2008
  • The structure supporting road sign is a road information facility for ensuring the safe transportation and smooth traffic. But, lots of road information facilities were damaged by the typhoon "Maemi" in 2003. Such damaged facilities should be rehabilitated and could increase economic loss by causing traffic accident. Therefore, in this study, behavior that reduce wind load and improve wind resistance of the structure supporting road sign are studied about wind load beyond design specification by abnormal climate as below. The first is wind load reducing technique such that shear key resist wind load that is not greater than design wind speed but in case that it is over the design wind limit, column member is rotated on the inner steel pipe axis by the brittle failure of shear key. The second is the technique such that fail-safe the overturning of road sign panel by equipment installation in the vertical member. The third is the technique of installing stiffening plate inside the vertical member to relieve stress concentration.

  • PDF