• 제목/요약/키워드: steel moment-resisting frames

검색결과 208건 처리시간 0.021초

철골 연성 모멘트 골조의 연성계수 및 강도계수 평가 (Evaluation of Ductility and Strength Factors for Special Steel Moment Resisting Frames)

  • 강철규;최병정
    • 한국강구조학회 논문집
    • /
    • 제16권6호통권73호
    • /
    • pp.793-805
    • /
    • 2004
  • 본 연구에서는 철골 연성 모멘트 골조에 대하여 반응수정계수(R)의 핵심 구성요소인 연성계수 및 강도계수를 평가하였다. 철골 연성 모멘트 골조에 대한 연성계수($R_{{\mu},MDOF}$) 는 단자유도 구조물에 대한 연성계수($R_{{\mu},SDOF}$)에 다자유도 보정계수($R_M$)를 곱하여 산정하였다. 단자유도 구조물에 대한 연성계수($R_{{\mu},SDOF}$)는 지진하중을 받는 탄소성 단자유도(SDOF) 구조물의 목표 변위 연성비와 주기에 따른 비선형 동적해석으로부터 산정하였다. 통계적 연구와 회귀분석으로부터 연성계수를 산정하기 위한 평가식이 제시되었다. 다자유도의 영향을 고려하기 위한 보정계수($R_M$)는 기존의 연구결과로보터 회귀분석을 이용하여 구하였다. 철골 연성 모멘트 골조에 대한 강도계수는 비선형 정적해석으로부터 산정하였다. 철골 연성 모멘트 골조의 연성 계수 및 강도계수를 평가하기 위하여, 구조물의 층수(4, 8 및 16층), 지진구역계수(Z=0.075, 0.2 및 0.4), 골조 시스템(외곽골조 및 분배골조) 및 붕괴 메카니즘(강기둥-약보 및 약기둥-강보)을 설계 매개변수로 하여 총 36개의 예제구조물을 설계하였다. 철골 연성 모멘트 골조의 연성계수 및 강도계수에 이러한 설계 매개변수가 미치는 영향을 분석하였다.

Developing a modified IDA-based methodology for investigation of influencing factors on seismic collapse risk of steel intermediate moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.367-377
    • /
    • 2020
  • Incremental dynamic analysis (IDA) widely uses for the collapse risk assessment procedures of buildings. In this study, an IDA-based collapse risk assessment methodology is proposed, which employs a novel approach for detecting the near-collapse (NC) limit state. The proposed approach uses the modal pushover analysis results to calculate the maximum inter-story drift ratio of the structure. This value, which is used as the upper-bound limit in the IDA process, depends on the structural characteristics and global seismic responses of the structure. In this paper, steel midrise intermediate moment resisting frames (IMRFs) have selected as case studies, and their collapse risk parameters are evaluated by the suggested methodology. The composite action of a concrete floor slab and steel beams, and the interaction between the infill walls and the frames could change the collapse mechanism of the structure. In this study, the influences of the metal deck floor and autoclaved aerated concrete (AAC) masonry infill walls with uniform distribution are investigated on the seismic collapse risk of the IMRFs using the proposed methodology. The results demonstrate that the suggested modified IDA method can accurately discover the near-collapse limit state. Also, this method leads to much fewer steps and lower calculation costs rather than the current IDA method. Moreover, the results show that the concrete slab and the AAC infill walls can change the collapse parameters of the structure and should be considered in the analytical modeling and the collapse assessment process of the steel mid-rise intermediate moment resisting frames.

Combined effect of the horizontal components of earthquakes for moment resisting steel frames

  • Reyes-Salazar, Alfredo;Juarez-Duarte, Jose A.;Lopez-Barraza, Arturo;Velazquez-Dimas, Juan I.
    • Steel and Composite Structures
    • /
    • 제4권3호
    • /
    • pp.189-209
    • /
    • 2004
  • The commonly used seismic design procedures to evaluate the maximum effect of both horizontal components of earthquakes, namely, the Square Root of the Sum of the Squares (SRSS) and the 30-percent (30%) combination rules, are re-evaluated. The maximum seismic responses of four three-dimensional moment resisting steel frames, in terms of the total base shear and the axial loads at interior, lateral and corner columns, are estimated as realistically as possible by simultaneously applying both horizontal components. Then, the abovementioned combination rules and others are evaluated. The numerical study indicates that both, the SRSS rule and the 30% combination method, may underestimate the combined effect. It is observed that the underestimation is more for the SRSS than for the 30% rule. In addition, the underestimation is more for inelastic analysis than for elastic analysis. The underestimation cannot be correlated with the height of the frames or the predominant period of the earthquakes. A basic probabilistic study is performed in order to estimate the accuracy of the 30% rule in the evaluation of the combined effect. Based on the results obtained in this study, it is concluded that the design requirements for the combined effect of the horizontal components, as outlined in some code-specified seismic design procedures, need to be modified. New combination ways are suggested.

A performance based strategy for design of steel moment frames under blast loading

  • Ashkezari, Ghasem Dehghani
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.155-164
    • /
    • 2018
  • Design of structures subjected to blast loads are usually carried out through nonlinear inelastic dynamic analysis followed by imposing acceptance criteria specified in design codes. In addition to comprehensive aspects of inelastic dynamic analyses, particularly in analysis and design of structures subjected to transient loads, they inherently suffer from convergence and computational cost problems. In this research, a strategy is proposed for design of steel moment resisting frames under far range blast loads. This strategy is inspired from performance based seismic design concepts, which is here developed to blast design. For this purpose, an algorithm is presented to calculate the capacity modification factors of frame members in order to simplify design of these structures subjected to blast loading. The present method provides a simplified design procedure in which the linear dynamic analysis is preformed, instead of the time-consuming nonlinear dynamic analysis. Nonlinear and linear analyses are accomplished in order to establish this design procedure, and consequently the final design procedure is proposed as a strategy requiring only linear structural analysis, while acceptance criteria of nonlinear analysis is implicitly satisfied.

Experimental and numerical assessment of beam-column connection in steel moment-resisting frames with built-up double-I column

  • Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir;Ziarati, Seyed Mohsen;Mehrpour, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.315-328
    • /
    • 2018
  • Built-up Double-I (BD-I) columns consist of two hot rolled IPE sections and two cover plates which are welded by fillet welds. In Iran, this type of column is commonly used in braced frames with simple connections and sometimes in low-rise Moment Resisting Frames (MRF) with Welded Flange Plate (WFP) beam-column detailing. To evaluate the seismic performance of WFP connection of I-beam to BD-I column, traditional and modified exterior MRF connections were tested subjected to cyclic prescribed loading of AISC. Test results indicate that the traditional connection does not achieve the intended behavior while the modified connection can moderately meet the requirements of MRF connection. The numerical models of the connections were developed in ABAQUS finite element software and validated with the test results. For this purpose, moment-rotation curves and failure modes of the tested connections were compared with the simulation results. Moreover to avoid improper failure modes, some improvements of the connections were evaluated through a numerical study.

A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan;Garakaninezhad, Alireza
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.667-678
    • /
    • 2022
  • Moment-resisting frames (MRFs) are among the most conventional steel structures for mid-rise buildings in many earthquake-prone cities. Here, a simplified performance-based methodology is proposed for the seismic collapse capacity assessment of these buildings. This method employs a novel multi-mode pushover analysis to determine the engineering demand parameters (EDPs) of the regular steel MRFs up to the collapse prevention (CP) performance level. The modal combination coefficients used in the proposed pushover analysis, are obtained from two metaheuristic optimization algorithms and a fitting procedure. The design variables for the optimization process are the inter-story drift ratio profiles resulting from the multi-mode pushover analyses, and the objective values are the outcomes of the incremental dynamic analysis (IDA). Here, the collapse capacity of the structures is assessed in three to five steps, using a modified IDA procedure. A series of regular mid-rise steel MRFs are selected and analyzed to calculate the modal combination coefficients and to validate the proposed approach. The new methodology is verified against the current existing approaches. This comparison shows that the suggested method more accurately evaluates the EDPs and the collapse capacity of the regular MRFs in a robust and easy to implement way.

Modeling of the lateral stiffness of masonry infilled steel moment-resisting frames

  • Lemonis, Minas E.;Asteris, Panagiotis G.;Zitouniatis, Dimitrios G.;Ntasis, Georgios D.
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.421-429
    • /
    • 2019
  • This paper presents an analytical model for the estimation of initial lateral stiffness of steel moment resisting frames with masonry infills. However, rather than focusing on the single bay-single storey substructure, the developed model attempts to estimate the global stiffness of multi-storey and multi-bay frames, using an assembly of equivalent springs and taking into account the shape of the lateral loading pattern. The contribution from each infilled frame panel is included as an individual spring, whose properties are determined on the basis of established diagonal strut macro-modeling approaches from the literature. The proposed model is evaluated parametrically against numerical results from frame analyses, with varying number of frame stories, infill openings, masonry thickness and modulus of elasticity. The performance of the model is evaluated and found quite satisfactory.

Influence of vertical load on in-plane behavior of masonry infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.609-627
    • /
    • 2016
  • Results of an experimental program are presented in this paper for the influence of vertical load on the in-plane behavior of masonry infilled steel frames. Five half-scaled single-story, single-bay steel frame specimens were tested under cyclic lateral loading. The specimens included four infilled frames and one bare frame. Two similar specimens as well as the bare frame had moment-resisting steel frames, while the remaining two specimens had pinned steel frames. For each frame type, one specimen was tested under simultaneous vertical and lateral loading, whereas the other was subjected only to lateral loading. The experimental results show that the vertical load changes the cracking patterns and failure modes of the infill panels. It improves dissipated hysteresis energy and equivalent viscous damping. Global responses of specimens, including stiffness and maximum strength, do no change by vertical loading considerably. Regarding the ductility, the presence of vertical load is ignorable in the specimen with moment-resisting frame. However, it increases the ductility of the infilled pinned frame specimen, leading to an enhancement in the m-factor by at least 2.5 times. In summary, it is concluded that the influence of the vertical load on the lateral response of infilled frames can be conservatively ignored.

Influence of steel-concrete interaction in dissipative zones of frames: I - Experimental study

  • Ciutina, Adrian;Dubina, Dan;Danku, Gelu
    • Steel and Composite Structures
    • /
    • 제15권3호
    • /
    • pp.299-322
    • /
    • 2013
  • In the case of seismic-resistant composite dual moment resisting and eccentrically braced frames, the current design practice is to avoid the disposition of shear connectors in the expected plastic zones, and consequently to consider a symmetric moment or shear plastic hinges, which occur only in the steel beam or link. Even without connectors, the real behaviour of the hinge may be different from the symmetric assumption, since the reinforced concrete slab is connected to the steel element close to the hinge locations, and also due to contact friction between the concrete slab and the steel element. The paper presents the results and conclusions of experimental tests on composite portal eccentrically braced frames and beam-to-column moment-resisting joints, carried out within the CEMSIG Research Centre of the Politehnica University of Timisoara, in order to check the validity of the assumption stated above. Reference steel and composite specimens with and without connectors in the plastic zones have been tested under monotonic and cyclic seismic type loading.

Effects of the isolation parameters on the seismic response of steel frames

  • Deringol, Ahmet H.;Bilgin, Huseyin
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.319-334
    • /
    • 2018
  • In this paper, an analytical study was carried out to propose an optimum base-isolated system for the design of steel structures equipped with lead rubber bearings (LRB). For this, 5 and 10-storey steel moment resisting frames (MRFs) were designed as Special Moment Frame (SMF). These two-dimensional and three-bay frames equipped with a set of isolation systems within a predefined range that minimizes the response of the base-isolated frames subjected to a series of earthquakes. In the design of LRB, two main parameters, namely, isolation period (T) and the ratio of strength to weight (Q/W) supported by isolators were considered as 2.25, 2.5, 2.75 and 3 s, 0.05, 0.10 and 0.15, respectively. The Force-deformation behavior of the isolators was modelled by the bi-linear behavior which could reflect the nonlinear characteristics of the lead-plug bearings. The base-isolated frames were modelled using a finite element program and those performances were evaluated in the light of the nonlinear time history analyses by six natural accelerograms compatible with seismic hazard levels of 2% probability of exceedance in 50 years. The performance of the isolated frames was assessed in terms of roof displacement, relative displacement, interstorey drift, absolute acceleration, base shear and hysteretic curve.