• Title/Summary/Keyword: steel modules

Search Result 92, Processing Time 0.02 seconds

Fabrication of High-power Shingled PV Modules Integrated with Bent Steel Plates for the Roof (절곡 강판 일체형 고출력 슁글드 태양광 모듈 제조)

  • Eunbi Lee;Min-Joon Park;Minseob Kim;Jinho Shin;Sungmin Youn
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.54-57
    • /
    • 2023
  • Recently, requirements for improving the convenience of constructing BIPV (Building Integrated Photo Voltaic) modules had increased. To solve this problem, we fabricated shingled PV modules integrated with bent steel plates for building integrated photovoltaics. These PV modules could be constructed directly on the roof without the installation structure. We found optimal lamination conditions with supporting structures to fabricate a module on a bent steel plate. Moreover, we applied a shingled design to PV modules integrated with bent steel plates to achieve a high electrical output power. The shingled module with bent steel plates shows 142.80 W of solar-to-power conversion in 0.785 m2 area.

Steel Module-to-Concrete Core Connection Methods in High Rise Modular Buildings: A Critical Review

  • Poudel, Bishal;Lee, Seungtaek;Choi, Jin Ouk
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.571-578
    • /
    • 2022
  • Modularization in a high-rise building is different from a small building, as it is exposed to more lateral forces like wind and earthquakes. The integrity, robustness, and overall stability of the modules and their performance is based on the joining techniques and strong structural systems. High lateral stiff construction structures like concrete shear walls and frames, braced steel frames, and steel moment frames are used for the stability of high-rise modular buildings. Similarly, high-rise stick-built buildings have concrete cores and perimeter frames for lateral load strength and stiffness. Methods for general steel-concrete connections are available in many works of literature. However, there are few modular-related papers describing this connection system in modular buildings. This paper aims to review the various research and practice adopted for steel-to-concrete connections in construction and compare the methods between stick-built buildings and modular buildings. The literature review shows that the practice of steel module-to-concrete core connection in high-rise modular buildings is like outrigger beams-to-concrete core connection in stick-built framed buildings. This paper concludes that further studies are needed in developing proper guidelines for a steel module-to-concrete core connection system in high-rise modular buildings.

  • PDF

An Experimental Study on Flexural Performance of Precast Concrete Modular Beam Systems (프리캐스트 콘크리트 모듈러 보 시스템의 휨 성능에 대한 실험적 연구)

  • Ro, Kyong Min;Cho, Chang Geun;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.69-76
    • /
    • 2021
  • Precast concrete (PC) modules have been increased its use in modular buildings due to their better seismic performance than steel modules. The main issue of the PC module is to ensure structural performance with appropriate connection methods. This study proposed a PC modular beam system for simple construction and improved structural and splicing performance. This modular system consisted of modules with steel plates inserted, and it is easy to construct by bolted connection. The steel plates play the role of tensile rebar and stirrup, which has the advantage of structural performance. The structural performance of the proposed PC modular beam system was evaluated by flexural test on one reinforced concrete (RC) beam specimen consisting of a monolithic, and two PC specimens with the proposed PC modular beam system. The results demonstrated that the proposed PC modular beam system achieved approximately 86% of the structural performance compared to the RC monolithic specimen, with similar ductility of approximately 1.06 fold greater.

Prestressing Inducing Effect of Continuous Open-top Steel Box Girder Using Modular CFT Members (모듈형 CFT부재를 이용한 개구제형 연속 강박스 거더의 프리스트레싱 도입 효과)

  • Lee, Hak Joon;Kim, Ryeon-Hak;Cho, Kwang-Il;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.111-119
    • /
    • 2022
  • The increasing sectional stiffness and inducing prestress method of continuous steel box girder using modular CFT members use the restoring force of the CFT module generated from removing the prestressing bars in the CFT module after integrating the prestressed CFT module with the lower steel plate of the steel box girders as a prestressing force. The integrated CFT module in the steel box girder can improve the sectional stiffness of the continuous steel box girder section. To examine the applicability of the introduction of prestressing to the integrated steel box girder using the CFT module, in this study, inducing prestressing tests were conducted using CFT modules for steel plate specimens simulating the lower steel plate of the continuous steel box girder, and FE analyses were conducted for inducing prestressing tests. In addition, to confirm the effect of inducing prestress to the actual steel box girder and increasing sectional stiffness by the CFT modules, FE analyses for the actually applicable continuous steel box section were carried out depending on prestressing force and sectional conditions of the CFT modules, FE analysis results were compared.

A study on the Interface architecture of an Integrated system for steel structure (철골구조 통합시스템의 인터페이스 구조 제시)

  • 박근운;천진호;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.405-412
    • /
    • 2000
  • This paper is the study of methodology for development of interface structure modules for an integrated system or steel framework structures. For development of the modules, it is used that data translation for the Steel Detail Neutral File(SDNF) format and the methodology have contacted individual systems in integrated system. The point of methology is translated system interface data with ASCⅡ format of system output and is presented with EXPRESS-G schema model. In the future, these neutral format will use structural design, engineering, facilities management, fabrication, etc. Therefore such a series of neutral formants is valuable to development of all structure fields.

  • PDF

An Experimental Study on Flexural Strength of Lip-Type Modular Steel Concrete Beam (Lip-Type 모듈형 SC보의 휨내력에 관한 실험적 연구)

  • Ahn, Hyung Joon;Shin, Il Kyoun;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.261-270
    • /
    • 2006
  • In this paper, the basic data regarding the application of the MSC (Modular Steel Concrete) beam are presented by comparing the experimental value with the theoretical value, focusing on the bending behavior of the Lip-type MSC beam, which is composed of steel and concrete. Considerable manpower is needed to fabricate the traditional MSC beam, particularly for the tasks of cutting, welding, etc. Because much time is needed to fabricate the traditional SC beam, the prefabrication concept is introduced, easily produce the required size of the SC beam by prefabricating the side module and the lower module, which is made up of a steel sheet. The result indicates that the method of uniting the modules, an d the composition method with concrete, should be improved. The proposed MSC beam can be used as a new structural member by increasing its coherent reinforcement with modules and the composition ratio of steel and concrete through a future study.

A Study on How to Minimize the Luminance Deviation of AC-LED Lighting (교류 LED 조명의 빛 밝기 편차를 최소화하는 방법에 대한 연구)

  • Dong Won Lee;Bong Hee Lee;Byungcheul Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.255-260
    • /
    • 2023
  • In order to spread LED lighting, LED lighting technology directly driven by alternating current (AC) commercial power has recently been introduced. Since current does not flow at a voltage lower than the threshold voltage of the LED, a non-conductive section occurs in the current waveform, and the higher the threshold voltage of the LED, the more discontinuous current waveforms are generated. In this paper, multi-LED modules are connected in series so that the threshold voltage can be adjusted according to the number of LED modules. A small number of LED modules are driven at a low instantaneous rectified voltage, and a large number of LED modules are driven at a high instantaneous rectified voltage to lengthen the overall lighting time of AC-LED lighting, thereby minimizing the luminance deviation of AC-LED lighting. In addition, the load current flowing through the LED module is adjusted to be the same as the design current even at the maximum rectified voltage higher than the design voltage, so that the light brightness of the LED module is kept constant. Therefore, even if the rectified voltage applied to the LED module changes, the AC-LED lighting in which the light brightness is constant and the luminance deviation is minimal has been realized.

Guideline for Filling Performance of Concrete for Modular LNG Storage Tanks (모듈형 LNG 저장탱크용 콘크리트 충전성능 가이드라인 제시)

  • Lee, Dong Kyu;Lee, Keon Woo;Park, Gi Joon;Kim, Sung Wook;Park, Jung Jun;Kim, Young Jin;Choi, Myoung Sung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.86-93
    • /
    • 2018
  • Recently, the use of composite steel plate concrete structural modules filled with concrete between steel plates of complex internal structure, in which a large amount of studs are installed, is increasing in order to reduce the weight and to increase workability of structures such as LNG storage tanks. However, in Korea, there is no systematic criterion for evaluating the construction performance of composite steel plate concrete structural modules. Therefore, in this study, we propose a filling guideline of concrete for composite steel plate structural module. For this purpose, high filling performance concrete with general strength range was formulated and tested for filling ability and permeability for each formulation. Rheology analysis was performed to quantitatively evaluate the flow characteristics of concrete. The reliability of $T_{500}$ and plastic viscosity was evaluated to reflect the results of each test, and a guideline for high filling concrete satisfying the reliability of 0.9 or more was derived by reflecting the results of the study on the relationship between the $T_{500}$ and plastic viscosity. Through final fill-box test, filling performance was verified and guidelines were suggested.

Experimental study on flexural strength of modular composite profile beams

  • Ahn, Hyung-Joon;Ryu, Soo-Hyun
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.71-85
    • /
    • 2007
  • This study suggests modular composite profile beams, where the prefab concept is applied to existing composite profile beams. The prefab concept produces a beam of desired size having two types of profile: side module and bottom module. Module section will improve construction efforts because it offers several benefits : reduction of deflections due to creep and shrinkage, which might be found in existing composite profile beams; increase in span/depth ratio; and free prefabrication of any required beams. Based on the established analysis theory of composite profile beams, an analysis theory of modular composite profile beams was suggested, and analysis values were compared with experimental ones. The behavior of individual modules with increase of load was measured with a strain gauge, and the shear connection ratio between modules was analyzed by using the measured values. As a result of experiment, it was found that theoretical flexural strength on condition of full connection was 57%-80% by connection of modules for each specimen, and it is expected that flexural strength will approximate the theoretical levels through further module improvement.

Wireless Optical Fiber Interferometer Arterial Pulse Wave Sensor System (무선 기반의 광섬유 간섭계형 맥파센서 시스템)

  • Park, Jaehee;Shin, Jong-Dug
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.439-443
    • /
    • 2013
  • A wireless optical fiber interferometer arterial pulse wave sensor system is developed for remote sensing. The wireless optical fiber sensor system consists of Zigbee communication modules and an optical fiber interferometer arterial pulse wave sensor. The optical fiber arterial pulse wave sensor is an in-line Michelson interferometer enclosed with steel reinforcement in a heat-shrinkable tube. The Zigbee communication modules are composed of an ATmega128L microprocessor and a CC2420 Zigbee chip. The arterial pulse waves detected by the optical fiber sensor were transmitted and received via the Zigbee communication modules. The experimental results show that the wireless optical fiber sensor system can be used for monitoring the arterial pulse waves remotely.