• Title/Summary/Keyword: steel modular structure

Search Result 47, Processing Time 0.034 seconds

Nonlinear Behavior of Composite Modular System's Joints (합성 모듈러 시스템 접합부의 비선형 거동 평가)

  • Choi, Young hoo;Lee, Jong il;Lee, Ho chan;Kim, Jin koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.153-160
    • /
    • 2021
  • The connection of the steel structure serves to transmit external forces to the main components. The same is true for the behavior of modular systems composed mainly of steel or composite members. In this study, the joint performance of the composite and steel modules proposed was evaluated. The analytical models of the two joint types were constructed and were subjected to cyclic loading to assess the safety and the energy dissipation capacity of the joint types. The analysis results of the joints showed that the joints of the modular systems remain stable when the joint rotation reached the seismic performance limit state of the 0.02 rad required for steel intermediate moment frame. It was also observed that the joint of the composite modular system showed higher energy dissipation capacity compared with the steel modular system.

Experimental study on seismic behavior of two-storey modular structure

  • Liu, Yang;Chen, Zhihua;Liu, Jiadi;Zhong, Xu
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.273-289
    • /
    • 2020
  • Due to the unique construction method of modular steel buildings (MSBs) with units prefabricated fully off the site and assembled quickly on the site, the inter-module connection for easy operation and overall performance of the system were key issues. However, it was a lack of relevant research on the system-level performance of MSBs. This study investigated the seismic performance of two-storey modular steel structure with a proposed vertical rotary inter-module connection. Three full-scale quasi-static tests, with and without corrugated steel plate and its combination, were carried out to evaluate and compare their seismic behaviour. The hysteretic performance, skeleton curves, ductile performance, stiffness degradation, energy dissipation capacity, and deformation pattern were clarified. The results showed that good ductility and plastic deformation ability of such modular steel structures. Two lateral-force resistance mechanisms with different layout combinations were also discussed in detail. The corrugated steel plate could significantly improve the lateral stiffness and bearing capacity of the modular steel structure. The cooperative working mechanism of modules and inter-module connections was further analyzed. When the lateral stiffness of upper and lower modular structures was close, limited bending moment transfer may be considered for the inter-module connection. While a large lateral stiffness difference existed initially between the upper and lower structures, an obvious gap occurred at the inter-module connection, and this gap may significantly influence the bending moments transferred by the inter-module connections. Meanwhile, several design recommendations of inter-module connections were also given for the application of MSBs.

Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction

  • Deng, En-Feng;Zong, Liang;Ding, Yang
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.347-359
    • /
    • 2019
  • Modular construction has been increasingly used for mid-to-high rise buildings attributable to the high construction speed, improved quality and low environmental pollution. The individual and repetitive room-sized module unit is usually fully finished in the factory and installed on-site to constitute an integrated construction. However, there is a lack of design guidance on modular structures. This paper mainly focuses on the evaluation of the initial stiffness of corrugated steel plate shears walls (CSPSWs) in container-like modular construction. A finite element model was firstly developed and verified against the existing cyclic tests. The theoretical formulas predicting the initial stiffness of CSPSWs were then derived. The accuracy of the theoretical formulas was verified by the related numerical and test results. Furthermore, parametric analysis was conducted and the influence of the geometrical parameters on the initial stiffness of CSPSWs was discussed and evaluated in detail. The present study provides practical design formulas and recommendations for CSPSWs in modular construction, which are useful to broaden the application of modular construction in high-rise buildings and seismic area.

Analytical Study on Structural Behaviors of Post-Tensioned Column-Base Connections for Steel Modular Structures (철골 모듈러 구조물의 포스트텐션 기둥-바닥 접합부 거동에 대한 해석적 연구)

  • Choi, Kyung-Suk;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.427-435
    • /
    • 2020
  • Modular structures are relatively lightweight compared to reinforced-concrete or steel structures. However, it is difficult to achieve structural integrity between the columns of unit modules in a modular structure, which causes undesirable effects on the lateral force resistance capacity against wind and earthquake loads. This is more prominent in modular structures whose overall heights are greater. Hence, a post-tensioned modular structural system is proposed herein to improve the lateral force resistance capacity of a typical modular structure. A post-tensioned column-base connection, which is the main component of the proposed modular structural system, is configured with shapes and characteristics that allow inducing self-centering behaviors. Finite element analysis was then performed to investigate the hysteretic behaviors of the post-tensioned column-base connection. The analysis results show that the hysteretic behaviors are significantly affected by the initial tension forces and beam-column connection details at the base.

Safety Evaluation of 40m Combined Modular Bridge Super-Structures Based on Transportation Lifting Methods (40m 조합모듈교량 상부구조 이송에 따른 안전성 검토)

  • Park, Sung-Min;Jung, Woo-Young
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.77-84
    • /
    • 2015
  • The purpose of this study was the analytical safety evaluation on the super-structure of precast modular bridge using standardized modular members and robotic construction during the transportation routing and lifting conditions. In order to evaluate the safety performance of the bridge system, 3-D full scale Finite Element (FE) of 40 m standardized modular block was developed in ABAQUS, followed by the analytical study to classify the structural system according to steel girder structures: 1) modular bridge block lifting method including the steel girder system; 2) modular bridge block lifting method without the steel girder system. The results from the analytical study revealed that the maximum stress of each modular member was within the maximum allowable stresses during lifting condition. However, the stress concentration at the connected area was more critical in comparison to the behavior of 40 m combined modular blocks during lifting time

A Study on Development of Modular System using Light-weighted Structure Members (경량형강을 사용한 모듈러 시스템 개발에 관한 연구)

  • Zheng, Sheng-Lin;Ju, Gi-Su;Park, Sung-Moo
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.43-48
    • /
    • 2008
  • The object of this paper is to evaluate on constructability of modular steel frame with the hollow structural steel section to LEB C-shape. A modular building is built with factory-manufacture and site-construction. The advantage of a Modular building presents that enhanced building quality, shortened construction period and easy at an expansion and enlargement for buildings but also has demerits such as size restriction of the modular units according to the Road Traffic Law and Inflexibility of the unit composition. So in this study we use light-weighted structure members with bolted joint for easy Knock-down and traffic, also we evaluated the constructability of this bolted joints type modular buildings.

  • PDF

Lightweight Design of a Modular Bridge for Railway Infrastructure Systems (철도 인프라 적용 교량형 조립식 모듈의 경량화 설계)

  • Im, Jae Moon;Shin, Kwang Bok;Park, Jae Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.471-478
    • /
    • 2016
  • This paper describes a method to design a lightweight modular bridge for a railway infrastructure system. A lightweight design was achieved using the material selection method. Aluminum extrusions and honeycomb sandwich composites were selected as the best materials to reduce the weight of the upper structure of a conventional modular bridge made of carbon-steel material. The structural integrity of the lightweight modular bridge was evaluated under vertical and wind loads. The twisting and bending natural frequencies were also evaluated to investigate its dynamic characteristics. The results showed that the structural integrity and natural frequencies of the lightweight modular bridge, made of aluminum extrusion and sandwich composites, satisfied the design requirements. Moreover, it was found that the weight of the conventional modular bridge made of carbon steel could be reduced by a maximum of 47% using lightweight materials.

A Study on the Constructability of Modular Steel Frame (해체.조립식 모듈러 철골조 건물의 시공성에 관한 연구)

  • Zheng, Sheng-Lin;Kang, Joo-Won;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • The object of this paper is to evaluate on constructability of modular steel frame with the hollow structural steel section to LEB C-shape. A modular building is built with factory-manufacture and site-construction. The advantage of a Modular building presents that enhanced building quality, shortened construction period and easy at an expansion and enlargement for buildings but also has demerits such as size restriction of the modular units according to the Road Traffic Law and Inflexibility of the unit composition. So in this study we use light-weighted structure members with bolted joint for easy Knock-down and traffic, also we evaluated the constructability of this bolted joints type modular buildings.

  • PDF

Seismic Performance Assessment of a Modular System with Composite Section (합성단면을 적용한 모듈러 시스템의 내진 성능평가)

  • Choi, Young-Hoo;Lee, Ho-Chan;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.69-77
    • /
    • 2017
  • By producing pre-engineered modular system in the factory, It is enable to expedite construction and can be distinguished from two types by the method resisting load. One is the open-sided modular system composed of beams and columns. The other is enclosed modular system composed of panels and studs. Of the modular systems, the open-sided modular system buildings the connection between modules are difficult due to closed member sections, and the overall strength is reduced as a result of local buckling. In this study, in order to solve these problems, a modular system with folded steel members filled with concrete are proposed. The capacity spectrum method presented in ATC 40 is used for seismic performance assessment of the proposed model structure and the structure with conventional steel members. The analysis results show that at the performance point of each model the number and rotation of plastic hinge formed in the proposed modular system are smaller than those in the conventional system. Based on this observation it is concluded that the proposed system with composite sections has superior seismic capacity compared with conventional system.

Design Strength of Non-symmetric Composite Column for Modular Unit Frames (모듈러 유닛 골조용 비대칭 합성기둥의 설계강도)

  • Park, Keum-Sung;Lee, Sang-Sup;Moon, Ji-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.101-109
    • /
    • 2018
  • Modular structural systems have been used increasingly for low- and mid-rise structures such as school and apartment buildings. Studies have recently been conducted on the application of the modular structural system to high-rise buildings. To provide sufficient resistances and economical construction for the high-rise modular structural system, a composite unit modular structure was proposed. In this study, the strength of the non-symmetric composite column for the proposed composite unit modular structure was investigated through a series of tests. The experimental study focused on the effect of the slenderness of the column, eccentricity, and through bars on the strength of such a column. Design equations for the non-symmetric column for a modular unit structure were also proposed. From the results, it was found that the proposed design equations provide reasonable strength prediction of the non-symmetric composite column for the modular unit structure.