• Title/Summary/Keyword: steel industry

Search Result 1,166, Processing Time 0.029 seconds

Case-Control Study of Occupational Acute Myeloid Leukemia in the Republic of Korea

  • Min Young Park;Hyoung-Ryoul Kim;Jun-Pyo Myong;Byung-Sik Cho;Hee-Je Kim;Mo-Yeol Kang
    • Safety and Health at Work
    • /
    • v.14 no.4
    • /
    • pp.451-456
    • /
    • 2023
  • Background: We conducted a case-control study to identify high-risk occupations and exposure to occupational hazards for acute myeloid leukemia (AML). Methods: When patients with AML admitted to the Department of Hematology in the study hospital for the first time are referred to the Department of Occupational and Environmental Medicine, data on occupation are collected by investigators to evaluate work-relatedness. Community-based controls were recruited through an online survey agency, and four controls per case were matched. Occupational information was estimated using structured questionnaires covering 27 specific occupations and 32 exposure agents. Conditional logistic regression analysis was performed by pairing cases and controls. Results: In the analysis of the risk of AML according to occupational classification, a significant association was found in paint manufacturing or painting work (OR = 2.22, 95% CI: 1.03-4.81) and aircrew (OR = 6.00, 95% CI: 1.00-35.91) in males, and in pesticide industry (OR = 6.89, 95% CI: 1.69-28.07) and cokes and steel industry (OR = 2.00, 95% CI: 1.18-22.06) in ≥60 years old. Moreover, the risk of AML increased significantly as the cumulative exposure to thinners increased. In the analyses stratified by sex and age, the association between pesticide exposure and AML was significant in males (OR = 3.28, 95% CI: 1.10-9.77) and in ≥60 years old (OR = 6.22, 95% CI: 1.48-26.08). Conclusion: This case-control study identified high-risk occupational groups in the Republic of Korea including paint manufacturers and painters, aircrew, and those who are occupationally exposed to pesticides or paint thinners.

Parametric Study on Explosion Impact Response Characteristics of Offshore Installation's Corrugated Blast Wall (해양플랜트 설비 Corrugated Blast Wall의 폭발 충격응답 인자 특성에 관한 파라메트릭 연구)

  • Kim, Bong-Ju;Kim, Byung-Hoon;Sohn, Jung-Min;Paik, Jeom-Kee;Seo, Jung-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.46-54
    • /
    • 2012
  • More than 70% of the accidents that occur on offshore installations stem from hydrocarbon explosions and fires, which, because they involve blast effects and heat, are extremely hazardous and have serious consequences in terms of human health, structural safety, and the surrounding environment. Blast barriers are integral structures in a typical offshore topside module to protect personnel and safety critical equipment by preventing the escalation of events caused by hydrocarbon explosions. Many researchers have shown the adequacy of the simple design tool commonly used by the offshore industry for the analysis and design of blast walls. However, limited information is available for corrugated blast wall design with explosion impact response characteristics. Therefore, this paper presents a parametric study on the explosion impact response characteristics of an offshore installation's stainless steel corrugated blast wall. This paperalso investigates and recommends design parameters for the structural design of a corrugated blast wall based on a nonlinear structural analysis of experiential results.

New Seat Design and Finite Element Analysis for Anti-Leakage of Globe Valve (글로브 밸브의 누설방지를 위한 시트 설계 및 유한요소해석)

  • Lee, Sung Ho;Kang, Gyeong Ah;Kwak, Jae-Seob;An, Ju Eun;Jin, Dong Hyun;Kim, Byung Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • The valves used to control or shut off the flow through a pipeline can be divided into many different types, including gate valves, globe valves, and check valves. Globe valves, in particular, have excellent properties, and because they can easily control the flow under high-pressure conditions, they are generally used in LNG ship and steam pipelines. In this paper, a method for changing the shape of a seat was suggested to solve the valve leakage problem from a structural perspective. In addition, the stress distribution and directional deformation were compared for each model. The suggested models were thus validated, and the optimized seat structure, which includes a self-supporting capability for decreasing the amount of leakage, was determined.

THERMAL-FLUID ANALYSIS FOR COOLING PERFORMANCE IMPROVEMENT OF 3.3KV(105A) COMPACT RACK TYPE MEDIUM VOLTAGE INVERTER SYSTEM (3.3kV(105A) COMPACT RACK TYPE 고압 인버터 시스템의 방열 성능 향상을 위한 열유동 해석)

  • Kim, S.Y.;Kim, S.D.;Ryoo, S.R.;You, N.K.;Kim, T.B.;Hong, C.O.;Ko, H.S.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.24-28
    • /
    • 2014
  • With ever rising concerns about saving of fossil fuel resource, there have been an increasing demand for use of energy more efficiently. The electric motor driven inverters can be a great help to improve energy efficiency. They are also used to control the motor speed to the actual need. Therefore the use of them can lead to reduce energy consumption. In particular, the medium voltage(MV) drive systems used for pumps, fans, steel rolling mills and tractions have widespread applications in the industry. They cover power ratings from 0.4MW to 40MW at the MV level of 2.3kV to 13.8kV. The majority of the installed MV drive systems however, are in the 1MW to 4MW range with voltage rating from 3.3kV to 6.6kV. But they are required to reduce size and weight like other power electronic equipments. In this paper, we studied on the 3.3kV(105A) compact rack type inverter system for improving the cooling efficiency. At first, we confirmed the tendency of temperature with computational simulation using ANSYS ICEPAK and actual experimental tests. And then we researched thermal performance improvement designs in order to reduce temperature of the transformer for the safe operation. It can reduce temperature of transformer that using pipe type flow guide in the system. As a result, we found out more efficient solution by thermal-fluid analysis.

A Study on Development of STACO Model to Predict Bead Height in Tandem GMA Welding Process (탄템 GMA 용접공정의 표면비드높이 예측을 위한 STACO모델 개발에 관한 연구)

  • Lee, Jongpyo;Kim, IllSoo;Park, Minho;Park, Cheolkyun;Kang, Bongyong;Shim, Jiyeon
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.8-13
    • /
    • 2014
  • One of the main challenges of the automatic arc welding process which has been widely used in various constructions such as steel structures, bridges, autos, motorcycles, construction machinery, ships, offshore structures, pressure vessels, and pipelines is to create specific welding knowledge and techniques with high quality and productivity of the production-based industry. Commercially available automated arc welding systems use simple control techniques that focus on linear system models with a small subset of the larger set of welding parameters, thereby limiting the number of applications that can be automated. However, the correlations of welding parameters and bead geometry as welding quality have mostly been linked by a trial and error method to adjust the welding parameters. In addition, the systematic correlation between these parameters have not been identified yet. To solve such problems, a new or modified models to determine the welding parameters for tandem GMA (Gas Metal Arc) welding process is required. In this study, A new predictive model called STACO model, has been proposed. Based on the experimental results, STACO model was developed with the help of a standard statistical package program, MINITAB software and MATLAB software. Cross-comparative analysis has been applied to verify the reliability of the developed model.

A Study on Characteristic of Fracture in Lap Joint Welded STS429L (STS429L 겹침 용접부의 파단 특성에 관한 연구)

  • Choi, Dong-Soon;Kim, Jae-Seong;Kim, Hyun-Jae;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.49-54
    • /
    • 2009
  • Recently, a demand of ferritic STS is increasing rapidly in automobile exhaust system. Exhaust manifolds are the part nearest to the engine so that the material is exposed to high temperature exhaust gas. Excellent heat resistant properties, especially high temperature strength, thermal fatigue resistance and high corrosion resistance are necessary for these parts. STS429L contains 15 weight percent of Cr and low Mo, so has good price competitive. And it has excellent high temperature strength and corrosion resistance, so receives attentions as material that applying to exhaust manifold. In tensile test of lap joint welded STS 429L, most of specimens are failed in base metal, but occurs brittle fracture in weld metals at some specimens in the face of good welding conditions. In the process of tensile test, lap joint welded STS429L specimens are transformed locally. The brittle fracture occurs that local transforming area exists in weld metals. But, butt welding specimens made by same materials showed ductile fracture in tensile test and bending test. In this study, suppose the reason of brittle fracture is in the combined local transform and tensile stress, through analysis of bead geometry, evaluate geometrical factor of brittle fracture in lap joint welded STS429L.

Effect of EAF dust on the formation of ultra lightweight aggregates by using bottom ash and dredged soil from coal power plant (인공경량골재의 EAF dust 첨가에 따른 초경량화에 관한 연구)

  • Choi, Yun-Jae;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.129-135
    • /
    • 2011
  • EAF dust from steel industry used as primary materials for the production of lightweight aggregates. Fe compounds in EAF dust plays an important role in the bloating reaction. This study was conducted to evaluate the feasibility of using bottom ash and dredged soil from coal power plant and EAF dust. The effect of different raw material compositions and sintering temperatures on the lightweight aggregate properties were evaluated. The characteristic of thermal bloating of bottom ash and dredged soil were mainly influenced by ferrous materials. The specific gravity of aggregate was decreased with the addition of EAF dust and kerosene was reduced sintering temperature on the bloating formation. Lightweight aggregate containing 10% EAF dust having apparent density under 1.0 g/$cm^3$ were produced at $1150{\sim}1200^{\circ}C$.

Experimental Study on Behavior of Confined Concrete with Electric Arc Furnace Oxidizing Slag Aggregates (전기로 산화 슬래그 골재를 사용한 콘크리트의 횡 구속 거동에 관한 실험적 연구)

  • Kim, Sang-Woo;Lee, Jung-Mi;Lee, Yong-Jun;Jung, You-Jin;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.195-201
    • /
    • 2011
  • This paper estimates the structural performance of spirally confined concrete having electric arc furnace (EAF) oxidizing slag aggregates. The EAF oxidizing slag is a by-product generated from iron and steel industry. The EAF oxidizing slag have been largely put to low-value-added uses due to its expansive properties of the free-CaO and free-MgO. Recently, this problem has been solved by the advances in steelmaking technology and thereby stabilizing EAF oxidizing slag aggregate. To verify the application of the EAF oxidizing slag aggregate to the structural concrete usage, a total of 27 cylindrical specimens with a diameter of 150 mm and a height of 300 mm were cast and tested. The test parameters were aggregate type and spiral reinforcement yield strength. Experimental results showed that the structural performance of specimens with EAF oxidizing slag aggregates was equivalent to that of confined concrete with natural aggregates.

Effect of Adding Scoria as Cement Replacement on Durability-Related Properties

  • al-Swaidani, Aref Mohamad;Aliyan, Samira Dib
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.241-254
    • /
    • 2015
  • A lot of reinforced concrete (RC) structures in Syria went out of service after a few years of construction. This was mainly due to reinforcement corrosion or chemical attack on concrete. The use of blended cements is growing rapidly in the construction industry due to economical, ecological and technical benefits. Syria is relatively rich in scoria. In the study, mortar/concrete specimens were produced with seven types of cement: one plain Portland cement (control) and six blended cements with replacement levels ranging from 10 to 35 %. Rapid chloride penetration test was carried in accordance with ASTM C 1202 after two curing times of 28 and 90 days. The effect on the resistance of concrete against damage caused by corrosion of the embedded steel has been investigated using an accelerated corrosion test by impressing a constant anodic potential. The variation of current with time and time to failure of RC specimens were determined at 28 and 90 days curing. In addition, effects of aggressive acidic environments on mortars were investigated through 100 days of exposure to 5 % $H_2SO_4$, 10 % HCl, 5 % $HNO_3$ and 10 % $CH_3COOH$ solutions. Evaluation of sulfate resistance of mortars was also performed by immersing in 5 % $Na_2SO_4$ solution for 52 weeks. Test results reveal that the resistance to chloride penetration of concrete improves substantially with the increase of replacement level, and the concretes containing scoria based-blended cements, especially CEM II/B-P, exhibited corrosion initiation periods several times longer than the control mix. Further, an increase in scoria addition improves the acid resistance of mortar, especially in the early days of exposure, whereas after a long period of continuous exposure all specimens show the same behavior against the acid attack. According to results of sulfate resistance, CEM II/B-P can be used instead of SRPC in sulfate-bearing environments.

Flow and Structural Response Characteristics of a Box-type Artificial Reef (상자형 어초의 흐름 및 구조응답 특성)

  • Kim, Dongha;Woo, Jinho;Na, Won-Bae;Yoon, Han-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.113-119
    • /
    • 2014
  • We carried out flow and structural response analysis of a box-type artificial reef (AR), which is made of concrete and structural steel. From the flow analysis, the wake region and drag coefficient were evaluated and accordingly, the structural analysis was performed to evaluate the stress and deformation of the target reef by considering the pressure field obtained from the flow analysis. The concept of wake volume was presented to quantitatively estimate the wake region and its variation according to flow direction and velocity. From the results, it is shown that the flow responses are only sensitive to the flow direction; the structural responses are sensitive to both of the flow velocity and direction although the magnitudes are negligible; and the wake volume became 3.52 times the AR volume with an optimum installation condition ($30^{\circ}$, flow direction) of the target unit.