• 제목/요약/키워드: steel hollow sections

검색결과 92건 처리시간 0.022초

편심하중을 받는 고성능강(HSA800) 조립 단주의 구조거동에 관한 해석적 연구 (Analytical Study on the Structural Behaviors of Stub Columns Fabricated with HSA800 of High Performance Steel Subjected to Eccentric Loads)

  • 유정한;김주우;양재근;강주원;이동우
    • 한국강구조학회 논문집
    • /
    • 제26권5호
    • /
    • pp.453-461
    • /
    • 2014
  • 본 연구에서는 건축구조용 고성능강 HSA800의 건축구조부재로의 적용을 위한 연구로써, 용접 제작된 각형강관 및 H형강에 대해 단주편심압축 실험을 바탕으로 해석모델을 이용한 검증이 이루어졌다. 특히, 고성능강 조립단주의 유한요소해석을 이용한 변수연구와 P-M 상관관계로부터 현행 기준의 적용여부를 평가하고자 하였으며, 폭두께비와 축력비를 주요변수로 두었다. 변수모델의 P-M상관도 분석결과, 압축력에 대한 비세장단면은 모두 현행기준의 요구에서 크게 상회하는 결과를 얻었고 축력비가 낮을수록 휨강도비에 충분한 여유를 갖는 것을 확인하였다. 압축력에 대한 세장판 단면을 갖는 각형강관의 경우, 현행기준의 요구에 못 미치는 결과를 보였다.

Finite element modeling of tubular truss bearings

  • Kozy, B.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • 제5권1호
    • /
    • pp.49-70
    • /
    • 2005
  • This paper reports on finite element analysis techniques that may be applied to the study of circular hollow structural sections and related bearing connection geometries. Specifically, a connection detail involving curved steel saddle bearings and a Structural Tee (ST) connected directly to a large-diameter Hollow Structural Section (HSS) truss chord, near its open end, is considered. The modeling is carried out using experimentally verified techniques. It is determined that the primary mechanism of failure involves a flexural collapse of the HSS chord through plastification of the chord wall into a well-defined yield line mechanism; a limit state for which a shell-based finite element model is well-suited to capture. It is also found that classical metal plasticity material models may be somewhat limited in their applicability to steels in fabricated tubular members.

Computationally Efficient and Accurate Simulation of Cyclic Behavior for Rectangular HSS Braces

  • Lee, Chang Seok;Sung, Min Soo;Han, Sang Whan;Jee, Hyun Woo
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1125-1138
    • /
    • 2018
  • During earthquakes, braces behave in complex manners because of the asymmetric response nature of their responses in tension and compression. Hollow structural sections (HSS) have been popularly used for braces due to their sectional efficiency in compression. The purpose of this study is to accurately simulate the cyclic behavior of rectangular HSS braces using a computationally efficient numerical model. A conceptually efficient and simple physical theory model is used as a basis model. To improve the accuracy of the model, cyclic beam growth and buckling load, as well as the incidences of local buckling and brace fracture are estimated using empirical equations obtained from regression analyses using test data on rectangular HSS braces. The accuracy of the proposed model is verified by comparing actual and simulated cyclic curves of brace specimens with various slenderness and width-to-thickness ratios.

지관이 회전된 냉간성형 각형강관 T형 접합부의 최대내력(II)-주관 웨브 파괴모드- (Ultimate Strength of branch-rotated T-joints in Cold-formed Square Hollow Sections-Chord web failure mode-)

  • 배규웅;박금성;강창훈;문태섭
    • 한국강구조학회 논문집
    • /
    • 제15권1호
    • /
    • pp.69-76
    • /
    • 2003
  • 본 논문에서 새로운 냉간성형 각형강관 T형 접합부의 최대내력과 변형제한치에 대한 연구이다. 새로운 접합부는 지관을 트러스 평면에 대하여 $45^{\circ}$회전시켜서 주관에 용접하는 형상이고, 지관 $45^{\circ}$회전형 T형 접합부 실험결과 중에서 주관 웨브 파괴가 지배하는 접합부만을 대상으로 설정하였다. $16.7{\leq}2{\gamma}(B/T){\leq}33.3$이고 $0.63{\leq}{\beta}(b_1/B){\leq}0.7$ 범위의 지관 $45^{\circ}$회전형 T형 접합부에 대하여, 최대내력을 정의를 위한 변형제한치는 주관폭의 3% 변형량(3%B) 으로 제안하였다. $0.63{\leq}{\beta}{\leq}0.7$ 범위의 기본형에 대한 기존의 항복선모델을 검토하고, 지관 $45^{\circ}$회전형에 대한 내력식을 제안하였다. 제안내력식은 기둥좌굴이론에 근거하고 있고, 냉간성형시 발생한 곡률부분을 고려하였다. 최종적으로 최적화된 주관단면 선택을 위한, 항복응력도와 $2{\gamma}$의 최적조건을 제안하였다.

Prediction of the flexural overstrength factor for steel beams using artificial neural network

  • Guneyisi, Esra Mete;D'niell, Mario;Landolfo, Raffaele;Mermerdas, Kasim
    • Steel and Composite Structures
    • /
    • 제17권3호
    • /
    • pp.215-236
    • /
    • 2014
  • The flexural behaviour of steel beams significantly affects the structural performance of the steel frame structures. In particular, the flexural overstrength (namely the ratio between the maximum bending moment and the plastic bending strength) that steel beams may experience is the key parameter affecting the seismic design of non-dissipative members in moment resisting frames. The aim of this study is to present a new formulation of flexural overstrength factor for steel beams by means of artificial neural network (NN). To achieve this purpose, a total of 141 experimental data samples from available literature have been collected in order to cover different cross-sectional typologies, namely I-H sections, rectangular and square hollow sections (RHS-SHS). Thus, two different data sets for I-H and RHS-SHS steel beams were formed. Nine critical prediction parameters were selected for the former while eight parameters were considered for the latter. These input variables used for the development of the prediction models are representative of the geometric properties of the sections, the mechanical properties of the material and the shear length of the steel beams. The prediction performance of the proposed NN model was also compared with the results obtained using an existing formulation derived from the gene expression modeling. The analysis of the results indicated that the proposed formulation provided a more reliable and accurate prediction capability of beam overstrength.

Experimental and Numerical Study on Complex Multi-planar Welded Tubular Joints in Umbrella-Type Space Trusses with Long Overhangs

  • Jiao, Jinfeng;Ma, Xiao;Lei, Honggang;Chen, Y. Frank
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1525-1540
    • /
    • 2018
  • A test rig with multi-functional purposes was specifically designed and manufactured to study the behavior of multi-planar welded tubular joints subjected to multi-planar concurrent axial loading. An experimental investigation was conducted on full-scale welded tubular joints with each consisting of one chord and eight braces under monotonic loading conditions. Two pairs or four representative specimens (two specimens for each joint type) were tested, in which each pair was reinforced with two kinds of different internal stiffeners at the intersections between the chords using welded rectangular hollow steel sections (RHSSs) and the braces using rolled circular hollow steel sections (CHSSs) and welded RHSSs. The effects of different internal stiffeners at the chord-brace intersection on the load capacity of joints under concurrent multi-planar axial compression/tension are discussed. The test results of joint strengths, failure modes, and load-stress curves are presented. Finite element analyses were performed to verify the experimental results. The study results show that the two different joint types with the internal stiffeners at the chord-brace intersection under axial compression/tension significantly increase the corresponding ultimate strength to far exceed the usual design strength. The load carrying capacity of welded tubular joints decreases with a higher degree of the manufacturing imperfection in individual braces at the tubular joints. Furthermore, the interaction effect of the concurrent axial loading applied at the welded tubular joint on member stress is apparent.

지관 플레이트가 주관에 용접된 각형강관 접합부의 설계내력 평가에 관한 연구 (Evaluation of Design Formulae for T-joints on the Branch Plate and Hollow Steel Sections welded connections)

  • 박금성;배규웅;문태섭
    • 한국강구조학회 논문집
    • /
    • 제17권5호통권78호
    • /
    • pp.581-591
    • /
    • 2005
  • 본 논문의 목적은 지관이 종방향 플레이트인 냉간성형 각형강관 T형 접합부의 최대내력 평가를 통하여 설계내력식을 제안하는 것이다. 이러한 T형 접합부의 형상은 지관에 플레이트를 이용하여 각형강관 주관면에 길이방향으로 용접하는 형상이고, 지관 플레이트를 갖는 각형강관 T형 접합부 실험결과 중에서 주관 플랜지 휨파괴가 지배하는 접합부만을 대상으로 하였다. $16.7{\leq}2{\gamma}(B/T){\leq}31.3$ 이고 $0.20{\leq}{\beta}(b1/B){\leq}0.75$ 범위의 지관 플레이트를 갖는 T형 접합부에 대하여, 접합부의 내력은 강도보다는 사용성이 지배하는 나타나 최대내력을 주관폭(B)의 1.5 P1%B로 정의하였다. 기본 접합부 형상에 대해 제안된 항복선모델을 참조하여 지관 플레이트를 갖는 접합부 형상에 대한 새로운 수정된 항복선 모델을 제안하였다. 최종적으로 유한요소해석과 항복선 해석에 근거한 제안 설계내력식과 실험결과를 비교하여 타당성을 검증하였다.

Employing a fiber-based finite-length plastic hinge model for representing the cyclic and seismic behaviour of hollow steel columns

  • Farahi, Mojtaba;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.501-516
    • /
    • 2017
  • Numerical simulations are prevalently used to evaluate the seismic behaviour of structures. The accuracy of the simulation results depends directly on the accuracy of the modelling techniques employed to simulate the behaviour of individual structural members. An empirical modelling technique is employed in this paper to simulate the behaviour of column members under cyclic and seismic loading. Despite the common modelling techniques, this technique is capable of simulating two important aspects of the cyclic and seismic behaviour of columns simultaneously. The proposed fiber-based modelling technique captures explicitly the interaction between the bending moment and the axial force in columns, and the cyclic deterioration of the hysteretic behaviour of these members is implicitly taken into account. The fiber-based model is calibrated based on the cyclic behaviour of square hollow steel sections. The behaviour of several column archetypes is investigated under a dual cyclic loading protocol to develop a benchmark database before the calibration procedure. The dual loading protocol used in this study consists of both axial and lateral loading cycles with varying amplitudes. After the calibration procedure, a regression analysis is conducted to derive an equation for predicting a varying calibrated modelling parameter. Finally, several nonlinear time-history analyses are conducted on a 6-story steel special moment frame in order to investigate how the results of numerical simulations can be affected by employing the intended modelling technique for columns instead of other common modelling techniques.

Stability study on tenon-connected SHS and CFST columns in modular construction

  • Chen, Yisu;Hou, Chao;Peng, Jiahao
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.185-199
    • /
    • 2019
  • Modular construction is an emerging technology to accommodate the increasing restrictions in terms of construction period, energy efficiency and environmental impacts, since each structural module is prefabricated offsite beforehand and assembled onsite using industrialized techniques. However, some innate structural drawbacks of this innovative method are also distinct, such as connection tying inaccessibility, column instability and system robustness. This study aims to explore the theoretical and numerical stability analysis of a tenon-connected square hollow section (SHS) steel column to address the tying and stability issue in modular construction. Due to the excellent performance of composite structures in fire resistance and buckling prevention, concrete-filled steel tube (CFST) columns are also taken into account in the analysis to evaluate the feasibility of adopting composite sections in modular buildings. Characteristic equations with three variables, i.e., the length ratio, the bending stiffness ratio and the rotational stiffness ratio, are generated from the fourth-order governing differential equations. The rotational stiffness ratio is recognized as the most significant factor, with interval analysis conducted for its mechanical significance and domain. Numerical analysis using ABAQUS is conducted for validation of characteristic equations. Recommendations and instructions in predicting the buckling performance of both SHS and CFST columns are then proposed.

각형강관 트러스의 K형 접합부에 관한 연구 ( I ) (A Study on the K-joints Using Square Hollow Steel Sections in Truss)

  • 김홍준;박금성;배규웅;문태섭
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.3-17
    • /
    • 1996
  • The purpose of this paper is to investigate experimentally and theoretically the strength and deformation of K-joints in welded Warren-type square hollow structural section truss. There are 2 types in K-joints in K-joints having one compression bracing member and one tension bracing member. One type is KP-series that brae members are rotated to $45^{\circ}$, another type is KS-series that are not rotated. Principal parameters are the ratio of the chord width to thickness (D/T=33.3, 25, 16.7), the ratio of brace width to chord width(d/D=0.4, 0.5, 0.67, 0.83, 1.0) and the ratio of eccenticity to chord height (e/D=0.25, 0.125, 0, -0.125, -0.25, -0.375, -0.5). The important results obtained from the experiments are as follow ; The strength of K-joints increase proportionally as the D/T ratio decreases, and the d/D ratio increases. But the e/D ratio has no correlation with the strength of K-joints. Generally the strength and ductility ratio of KP-series increase more than a current type(KS-series) in full ${\beta}$range.

  • PDF