• Title/Summary/Keyword: steel haunch

Search Result 32, Processing Time 0.023 seconds

Seismic Retrofit of Welded Steel Moment Connections Considering the Presence of Composite Floor Slabs (바닥슬래브를 고려한 용접철골모멘트접합부의 내진보강)

  • Lee, Cheol Ho;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.25-36
    • /
    • 2017
  • In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange was prevalent. The presence of a concrete slab and resulting composite action was speculated as one of the critical causes of the prevalent bottom flange fracture. In this study, four seismic retrofit schemes are proposed in order to salvage welded steel moment connections with composite floor slabs in existing steel moment frames. Because top flange modification of existing beams is not feasible due to the presence of a concrete floor slab, three schemes of bottom flange modification by using welded triangular or straight haunches or RBS(reduced beam section), and beam web strengthening by attaching heavy shear tab were cyclically tested and analyzed. Test results of this study show that haunch and web-strengthened specimens can eliminate the detrimental effect caused by composite action and ensure excellent connection plastic rotation exceeding 5% rad. Design recommendations for each retrofit scheme together with supplemental numerical studies are also presented.

Experimental behaviour of extended end-plate composite beam-to-column joints subjected to reversal of loading

  • Hu, Xiamin;Zheng, Desheng;Yang, Li
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.307-321
    • /
    • 2006
  • This paper is concerned with the behaviour of steel and concrete composite joints subjected to reversal of loading. Three cruciform composite joint specimens and one bare steel joint specimen were tested so that one side of the beam-to-column connection was under negative moment and another side under positive moment. The steelwork beam-to-column connections were made of bolted end plate with an extended haunch section. Composite slabs employing metal decking were used for all the composite joint specimens. The moment-rotation relationships for the joints were obtained experimentally. Details of the experimental observations and results were reported.

Simplified nonlinear simulation for composite segmental lining of rectangular shield tunnels

  • Zhao, Huiling;Liu, Xian;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.513-522
    • /
    • 2022
  • Steel-concrete composite segments replacing the conventional reinforced concrete segments can provide the rectangular shield tunnel superiorities on bearing capacity, ductility and economy. A simplified model with high-efficiency on computation is proposed for investigating the nonlinear response of the rectangular tunnel lining composed of composite segments. The simulation model is developed by an assembly of nonlinear fiber beam elements and spring elements to express the transfer mechanism of forces through components of composite segments, and radial joints. The simulation is conducted with the considerations of material nonlinearity and geometric nonlinearity associated with the whole loading process. The validity of the model is evaluated through comparison of the proposed nonlinear simulation with results obtained from the full-scale test of the segmental tunnel lining. Furthermore, a parameter study is conducted by means of the simplified model. The results show that the stiffness of the radial joint at haunch of the ling and the thickness of inner steel plate of segments have remarkable influence on the behaviour of the lining.

Structural Performance Evaluation of Seismic Wide-flanged Beam-to-Rectangular Steel Tube Column Connection Details (내진 각형강관 기둥-H형강 보 접합상세의 구조성능평가)

  • Jang, Bo-Ra;Shim, Hyun-Ju;Kim, Yong-Ick;Chung, Jin-An;Oh, Young-Suk;Kim, Sang-Seup;Choi, Byong-Jeong;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.305-312
    • /
    • 2010
  • The objective of this paper is to examine the structural performance of steel moment-resisting frames on the various connection details of Seismic Wide-flanged Beam-to-Rectangular Steel Tube Column connections. Although compared to an H-shaped steel tube, a rectangular steel tube has many advantages and is more efficient, its application is limited due to the lack of experience in using it and the connection details. Existing steel moment connections using the rectangular steel tube are mainly used through plate diaphragms. The processing of construction of the rectangular steel tube is so complicated that it is hard to apply it in the field. In this study, the structural performance and the earthquake capacity of the connection details that do not cut the rectangular steel tube column were investigated. A comparative analysis of the strength, rigidity, and energy absorption capacity of the welded connection details using an end-plate and a haunch was also performed.

Direct analysis of steel frames with asymmetrical semi-rigid joints

  • Chan, Jake L.Y.;Lo, S.H.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2019
  • Semi-rigid joints have been widely studied in literature in recent decades because they affect greatly the structural response of frames. In literature, the behavior of semi-rigid joints is commonly assumed to be identical under positive and negative moments which are obviously incorrect in many cases where joint details such as bolt arrangement or placement of haunch are vertically asymmetrical. This paper evaluates two common types of steel frames with asymmetrical beam-to-column joints by Direct Analysis allowing for plasticity. A refined design method of steel frames using a proposed simple forth order curved-quartic element with an integrated joint model allowing for asymmetrical geometric joint properties is presented. Furthermore, the ultimate behavior of six types of asymmetrical end-plate connections under positive and negative moment is examined by the Finite Element Method (FEM). The FEM results are further applied to the proposed design method with the curved-quartic element for Direct Analysis of two types of steel frames under dominant gravity or wind load. The ultimate frame behavior under the two different scenarios are examined with respect to their failure modes and considerably different structural performances of the frames were observed when compared with the identical frames designed with the traditional method where symmetrical joints characteristics were assumed. The finding of this research contributes to the design of steel frames as their asymmetrical beam-to-column joints lead to different frame behavior when under positive and negative moment and this aspect should be incorporated in the design and analysis of steel frames. This consideration of asymmetrical joint behavior is recommended to be highlighted in future design codes.

Performance evaluation of different strengthening measures for exterior RC beam-column joints under opening moments

  • Dar, M. Adil;Subramanian, N.;Pande, Sumeet;Dar, A.R.;Raju, J.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.243-254
    • /
    • 2020
  • Devastating RC structural failures in the past have identified that the behavior of beam-column joints is more critical and significantly governs the global structural response under seismic loading. The congestion of reinforcement at the beam-column joints with other constructional difficulties has escalated the attention required for strengthening RC beam-column joints. In this context, numerous studies have been carried out in the past, which mainly focused on jacketing the joints with different materials. However, there is no comparative study of different approaches used to strengthen RC beam-column joints, from efficiency and cost perspective. This paper presents a detailed investigation carried out to study the various strengthening schemes of exterior RC beam-column joints, viz., steel fiber reinforcement, carbon fiber reinforced polymer (CFRP) strengthening, steel haunch strengthening, and confining joint reinforcement. The effectiveness of each scheme was evaluated experimentally. These specimens were tested under horizontal loading that produced opening moments on the joints and their behavior was studied with emphasis on strength, displacement ductility, stiffness, and failure mechanism. Special attention was given to the study of crack-width.

Re-evaluation of Force Transfer Mechanism of Welded Steel Moment Connections (용접 철골 모멘트접합부의 응력전달 메커니즘 재평가)

  • Lee, Choel-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.59-69
    • /
    • 2005
  • Employing the classical beam theory for the design of welded steel moment connections has been brought into question by several researchers since the 1994 Northridge earthquake. In this study, the load transfer mechanism in various welded steel moment connections is comprehensively reviewed mainly based on recent studies conducted by the writer. Available analytical and experimental results showed that the load path in almost all the welded steel moment connections is completely different from that as predicted by the classical beam theory. Vertical plates near the connection such as the beam web, the web of the straight haunch, and the rib act as a strut rather than following the classical beam theory. The shear force transfer in the RBS connection is essentially the same as that in PN type connection. Some simplified analytical models that can be used as the basis of a practical design procedure are also presented.

Stress concentration factors test of reinforced concrete-filled tubular Y-joints under in-plane bending

  • Yang, Jun-fen;Yang, Chao;Su, Ming-zhou;Lian, Ming
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.203-216
    • /
    • 2016
  • To study the stress concentration factors (SCFs) of concrete-filled tubular Y-joints subject to in-plane bending, experiments were used to investigate the hot spot stress distribution along the intersection between chord and brace. Three concrete-filled tubular chords forming Y-joints were tested with different reinforcing components, including doubler-plate, sleeve, and haunch-plate reinforcement. In addition, an unreinforced joint was also tested for comparison. Test results indicate that the three different forms of reinforcement effectively reduce the peak SCFs compared with the unreinforced joint. The current research suggests that the linear extrapolation method can be used for chords, whereas the quadratic extrapolation method must be used for braces. The SCF is effectively reduced and more evenly distributed when the value of the axial compression ratio in the chord is increased. Furthermore, the SCFs obtained from the test results were compared to predictions from some well-established SCF equations. Generally, the predictions from those equations are very consistent for braces, but very conservative for concrete-filled chords.

Beam-Column Connection with 1200mm Deep Multi-Reduced Taper Beam for Intermediate Moment Frame (깊이 1200mm급 변단면보의 중간모멘트골조용 내진접합부 개발)

  • Jung, Si-Hwa;Alemayehe, Robel Wondimu;Park, Man-Woo;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.135-146
    • /
    • 2019
  • Deep beam has high section modules compared with shallow beam of the same weight. However, deep beam has low rotational capacity and high possibility of brittle failure so it is not possible to apply deep beams with a long span to intermediate moment frames, which should exhibit a ductility of 0.02rad of a story drift angle of steel moment frames. Accordingly, KBC and AISC limit the beam depth for intermediate and special moment frame to 750mm and 920mm respectively. The purpose of this paper is to improve the seismic performance of intermediate moment frame with 1200mm depth beam. In order to enhance vulnerability of plastic deformation capacity of deeper beam, Multi-Reduced Taper Beam(MRTB) shape that thickness of beam flange is reinforced and at the same time some part of the beam flange width is weakened are proposed. Based on concept of multiple plastic hinge, MRTB is intended to satisfy the rotation requirement for intermediate moment frame by dividing total story drift into each hinge and to prevent the collapse of the main members by inducing local buckling and fracture at the plastic hinge location far away from connection. The seismic performance of MRTB is evaluated by cyclic load test with conventional connections type WUF-W, RBS and Haunch. Some of the proposed MRTB connection satisfies connection requirements for intermediate moment frame and shows improved the seismic performance compared to conventional connections.

Structural Performance of the Modular System with Fully Restrained Moment Connections using Ceiling Bracket (천장 브래킷을 이용한 완전강접합 모듈러 시스템의 구조성능)

  • Lee, Seung-Jae;Kwak, Eui-Shin;Park, Jae-Seong;Kang, Chang-Hoon;Shon, Su-Deok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.37-44
    • /
    • 2017
  • Due to structural characteristics, construction costs and duration of a modular system would be saved by minimizing the schedule on the job site. As such, it is crucial to develop a connection that can guarantee stiffness while allowing for simple assembling. Particularly, the mid- to high-rise construction of the modular system necessitates the securing of the structural stability and seismic performance of multi-unit frames and connections, and thus, the stiffness of unit-assembled structures needs to be re-evaluated and designed. However, evaluating a frame consisting of slender members and reinforcing materials is a complicated process. Therefore, the present study aims to examine the structural characteristics of a modular unit connection based a method for reinforcing connection brackets and hinges while minimizing the loss of the cross section. Toward this end, the study modeled the beam-to-column connection of a modular system with the proposed connection, and produced a specimen which was used to perform a cycling loading test. The study compared the initial stiffness, the attributes of the hysteretic behavior, and the maximum flexural moment, and observed whether the model acquired the seismic performance, compared to the flexural strength of the steel moment frame connection that is required by the Korean Building Code. The test results showed that the proposed connection produced a similar initial stiffness value to that of the theoretical equation, and its maximum strength exceeded the theoretical strength. Furthermore, the model with a larger ceiling bracket showed higher seismic performance, which was further increased by the reinforcement of the plate.