• Title/Summary/Keyword: steel girders

Search Result 358, Processing Time 0.027 seconds

Nonlinear Finite Element Analysis of Steel Composite Girders (합성형 거더의 3차원 비선형 거동해석)

  • 주영태;강병수;성원진;박대열;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.173-176
    • /
    • 2003
  • Progressive failure analysis of steel composite double T-beam is performed to investigate the mechanical effects of steel composite fabricated in the webs of double-T beam to replace concrete placing forms. The analysis is based on nonlinear finite element scheme considering material nonlinearities of concrete, reinforcing bar and PS steel. Four-parameter strength envelope defines the hardening and softening phenomena of concrete with consideration of the various levels of confining pressures. Rankine maximum strength criterion defines the elasto-plasticity of PS steel and reinforcing bar, and Von Mises $J_2$ failure criterion for steel plate which wraps the concrete webs of double T-beam. A 6m long two-span steel composite double T-beam is analyzed and compared with the experimental results.

  • PDF

Inelastic response of wide flange steel beams curved by symmetrical weak axis bending using two-point loads

  • Gergess, Antoine N.;Sen, Rajan
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.951-965
    • /
    • 2014
  • Point bending is commonly used for cambering and curving steel girders to large radii. In this system, a hydraulic ram or press is used to apply concentrated loads at selected points to obtain the required vertical (cambering) or horizontal (curving) curved profile from induced permanent deformations. This paper derives closed form solutions that relate loads to permanent deformations for horizontally curving wide flange steel beams based on their post-yield response. These solutions are presented in a parametric form to identify the relationship between key variables and their impact on the accuracy of the curving operation. It is shown that point bending could yield parabolic curved profiles that are within 1% of a desired circular curve if the span length to radius of curvature ratio (L / R) is less than 1.5 and the point loads are spaced at one third the beam length. Safe limits are then established on loads, strains and curvatures to avoid damaging the steel section. This leads to optimization of the point bending operation for inducing a circular profile in wide flange steel beams of any size.

Behaviour and stability of prestressed steel plate girder for torsional buckling

  • Gupta, L.M.;Ronghe, G.N.;Naghate, M.K.
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • A higher level of engineering standard in the field of construction, is the use of prestressing in building structures. The concept of prestressing steel structures has only recently been widely considered, despite a long and successful history of prestressing concrete members. Several analytical studies of prestressed steel girders were reported in literatures, but much of the work was not studied with reference to the optimal design and behaviour of the prestressed steel plate girder. A plate girder prestressed eccentrically, will behave as a beam-column, which is subjected to axial compression and bending moment which will cause the beam to buckle out. The study of buckling of the prestressed steel plate girder is necessary for stability criteria. This paper deals with the stability of prestressed steel plate girder using concept of "Vlasov's Circle of Stability" under eccentric prestressing force.

Probabilistic Risk Assessment of a Steel Composite Hybrid Cable-Stayed Bridge Based on the Optimal Reliabilities (최적신뢰성에 의한 강합성 복합사장교의 확률적 위험도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Probabilistic risk assessment was conducted on a hybrid cable-stayed bridge consisting of a steel-composite plate girder and a concrete girder with a long span, designed using the working stress design and strength design methods. The component reliabilities of the bridge's cables, pylons, girders, and steel-concrete conjunction were evaluated using the AFOSM(Advanced First Order Second Moment) algorithm and the simulation technique at the critical sections, based on the maximum axial force, shear, and positive and negative moments of the selected sections. For the analysis of system reliability, the hybrid cable-stayed bridge consisting of cables, pylons, and plate girders was modeled into combined failure modes, and for system reliability, the probabilities of failure and reliability index of the structural system were evaluated. Based on the results of this study, the critical failure modes of the hybrid cable-stayed bridge based on the bridge's structural characteristics are suggested, and the efficiency of the partial ETA technique for use in the risk assessment method was confirmed.

Time-Dependent Behavior of Prestressed Concrete Bridges Constructed by the Segmental Cantilever Method (캔틸레버 시공법에 의한 프리스트레스트 콘크리트 교량의 장기 거동 해석)

  • 오병환;최계식;이상희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.73-76
    • /
    • 1989
  • A numerical procedure is developed to analyze the time-dependent behavior of prestressed concrete bridges constructed by the segmental cantilever method. The developed computer program accounts for the time-dependent properties of prestressed concrete materials due to the varing modulus of elasticity, creep and shrinkage of concrete and the stress relaxation of prestressing steel. It also accounts for the stiffness increase due to the presence of the steel reinforcements and the effects of the shear deformation of the prestressed concrete bridge girders. The program is applied to a multi-span continuous segmental prestressed concrete bridge to demonstrate its capabilities.

  • PDF

Structural Behavior of Polymer Concrete Bos Girders (폴리머콘크리트 박스 거어더의 구조적 거동)

  • 연규석;김광우;이윤수;김성순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.213-219
    • /
    • 1993
  • The box girder was developed using polymer concrete, box girder were made for flexural behavior evaluation. The box girder was reinforced with reinforcing steel bars and fiber glass roving cloths. Failure loads were 13.5 tons and 16.6tons for steel reinforced girder and fiber glass reinforced girder, respectively. Especially for the fiber glass reinforced girder, the shape was not changed even after failure. It is expected that application of this idea will be useful for developing under ground box, girder, utility tunnel, small stream bridge box, etc.

  • PDF

Finite element response sensitivity analysis of continuous steel-concrete composite girders

  • Zona, Alessandro;Barbato, Michele;Conte, Joel P.
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.183-202
    • /
    • 2006
  • The behavior of steel-concrete composite beams is strongly influenced by the type of shear connection between the steel beam and the concrete slab. For accurate analytical predictions, the structural model must account for the interlayer slip between these two components. This paper focuses on a procedure for response sensitivity analysis using state-of-the-art finite elements for composite beams with deformable shear connection. Monotonic and cyclic loading cases are considered. Realistic cyclic uniaxial constitutive laws are adopted for the steel and concrete materials as well as for the shear connection. The finite element response sensitivity analysis is performed according to the Direct Differentiation Method (DDM); its analytical derivation and computer implementation are validated through Forward Finite Difference (FFD) analysis. Sensitivity analysis results are used to gain insight into the effect and relative importance of the various material parameters in regards to the nonlinear monotonic and cyclic response of continuous composite beams, which are commonly used in bridge construction.

Strength and Lateral Torsional Behavior of Horizontally Curved Steel I-Girders Subjected to Equal End Moments (양단 균일 모멘트를 받는 수평곡선 I형 강재 거더의 횡-비틀림 거동 및 강도 산정 방안)

  • Lee, Keesei;Lee, Manseop;Choi, Junho;Kang, Youngjong
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • A curved member should resist bending and torsional moments simultaneously even though the primary load is usually supposed to be gravitational load. The torsional moment causes complicate stress state and also can result in early yielding of material to reduce member strength. According to analysis results, the strength of a curved member that has 45 degrees of subtended angle could decrease more than 50% compare to straight girder. Nevertheless, there have been very few of researches related with ultimate strength of curved girders. In this study, various kinds of stiffness about bending, pure torsion and warping were considered with a number of models in order to verify the main factor that affects ultimate behavior of curved girder. Lateral and rotational displacement of curved member were introduced as lateral-torsional-vertical behavior and bending-torsional moment interaction curve was derived. Finally, a strength equation for ultimate moment of horizontally curved steel I-girders subjected to equal end moments based on the interaction curves. The equation could take account of the effect of curvature, unbraced length and sectional properties.

Experimental Study on Fatigue Crack in Welded Crane Runway Girders(I) -Initiation and Propagation of Fatigue Crack- (크레인 거더의 피로균열에 관한 실험적 연구(I) -피로균열의 발생과 진전-)

  • Im, Sung Woo;Kim, Jin Ho;Chang, In Hwa;Shinga, Atsumi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.237-248
    • /
    • 1997
  • Three types of fatigue cracks frequently observed in the crane runway girders are verified experimentally using two testing-purpose girders with the size of $6400{\times}600{\times}300$ in millimeters. The fatigue cracks are observed in the vicinity of load-bearing points, at the end of gusset plates and at the fillet welded joints between the lower flange and the web. The load-bearing-point cracks are initiated at the intersection of the fillet welds between the upper flange and the web, where the vertical stiffener is located. The cracks grow up toward the diagonal direction of the web. The cracks observed at the fillet welded joints grow up perpendicularly to the crane runway girder. Compared with the JSSC fatigue design code, the joint class is classified as follows: E for the vicinity of load-bearing points, G or H for the end of gusset plates and D for the lower fillet welded joints. The tests reveal that the class of joint classification at the end of gusset plates and at the lower flange coincides with the fatigue design code.

  • PDF

Parametric Study on Curved Tub Girders for Varying Radii of Curvature (곡선 개구제형 거더의 곡률에 따른 매개변수 해석연구)

  • Kim, Jong-Min;Han, Taek-Hee;Choi, Jun-Ho;Choi, Byung-Ho;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.175-188
    • /
    • 2012
  • A parametric study for varying the radii of curvature is performed with a curved tub girder bridge having three continuous spans. The bracing forces of top lateral bracings from the results of numerical equations are compared to those of 3-dimensional finite element analyses. New modifying factors applicable in computing the nominal member forces of top lateral bracings were suggested. The numerical equations were derived based on one girder system, and it is shown that the numerical equations exhibit some errors compared with 3D FEA results. The main reason for this phenomenon lies on the number of girders. The twin girder system has an external cross-beam between inner and outer girder. It also has larger lateral stiffness than the single girder system. Finally, the distributions by the torsion, bending, distortion, and lateral loading of the top lateral bracing forces were presented in this paper.