• Title/Summary/Keyword: steel frame structures

Search Result 765, Processing Time 0.025 seconds

Computational and experimental analysis of beam to column joints reinforced with CFRP plates

  • Luo, Zhenyan;Sinaei, Hamid;Ibrahim, Zainah;Shariati, Mahdi;Jumaat, Zamin;Wakil, Karzan;Pham, Binh Thai;Mohamad, Edy Tonnizam;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.271-280
    • /
    • 2019
  • In this paper, numerical and experimental assessments have been conducted in order to investigate the capability of using CFRP for the seismic capacity improvement and relocation of plastic hinge in reinforced concrete connections. Two scaled down exterior reinforced concrete beam to column connections have been used. These two connections from a strengthened moment frame have been tested under uniformly distributed load before and after optimization. The results of experimental tests have been used to verify the accuracy of numerical modeling using computational ABAQUS software. Application of FRP plate on the web of the beam in connections to improve its capacity is of interest in this paper. Several parametric studies were carried out for CFRP reinforced samples, with different lengths and thicknesses in order to relocate the plastic hinge away from the face of the column.

Summarized IDA curves by the wavelet transform and bees optimization algorithm

  • Shahryari, Homayoon;Karami, M. Reza;Chiniforush, Alireza A.
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.165-175
    • /
    • 2019
  • Incremental dynamic analysis (IDA), as an accurate method to evaluate the parameters of structural performance levels, requires many non-linear time history analyses, using a set of ground motion records which are scaled to different intensity levels. Therefore, this method is very computationally demanding. In this study, a new method is presented to estimate the summarized (16%, 50%, and 84% fractiles) IDA curves of a first-mode dominated structure using discrete wavelet transform and bees optimization algorithm. This method reduces the number of required ground motion records for the prediction of the summarized IDA curves. At first, a subset of first list ground motion records is decomposed by means of discrete wavelet transform which have a low dispersion estimating the summarized IDA curves of equivalent SDOF system of the main structure. Then, the bees algorithm optimizes a series of factors for each level of detail coefficients in discrete wavelet transform. The applied factors change the frequency content of original ground motion records which the generated ground motions records can be utilized to reliably estimate the summarized IDA curves of the main structure. At the end, to evaluate the efficiency of the proposed method, the seismic behavior of a typical 3-story special steel moment frame, subjected to a set of twenty ground motion records is compared with this method.

Seismic performance of a building base-isolated by TFP susceptible to pound with a surrounding moat wall

  • Movahhed, Ataallah Sadeghi;Zardari, Saeid;Sadoglu, Erol
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.87-100
    • /
    • 2022
  • Limiting the displacement of seismic isolators causes a pounding phenomenon under severe earthquakes. Therefore, the ASCE 7-16 has provided minimum criteria for the design of the isolated building. In this research the seismic response of isolated buildings by Triple Friction Pendulum Isolator (TFPI) under the impact, expected, and unexpected mass eccentricity was evaluated. Also, the effect of different design parameters on the seismic behavior of structural and nonstructural elements was found. For this, a special steel moment frame structure with a surrounding moat wall was designed according to the criteria, by considering different response modification coefficients (RI), and 20% mass eccentricity in one direction. Then, different values of these parameters and the damping of the base isolation were evaluated. The results show that the structural elements have acceptable behavior after impact, but the nonstructural components are placed in a moderate damage range after impact and the used improved methods could not ameliorate the level of damage. The reduction in the RI and the enhancement of the isolator's damping are beneficial up to a certain point for improving the seismic response after impact. The moat wall reduces torque and maximum absolute acceleration (MAA) due to unexpected enhancement of mass eccentricity. However, drifts of some stories increase. Also, the difference between the response of story drift by expected and unexpected mass eccentricity is less. This indicates that the minimum requirement displacement according to ASCE 7-16 criteria lead to acceptable results under the unexpected enhancement of mass eccentricity.

Study of the dynamic behavior of porous functionally graded suspension structural systems using finite elements method

  • Ayman E., Nabawy;Ayman M.M., Abdelhaleem;Soliman. S., Alieldin;Alaa A., Abdelrahman
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.697-713
    • /
    • 2022
  • In the context of the finite elements method, the dynamic behavior of porous functionally graded double wishbone vehicle suspension structural system incorporating joints flexibility constraints under road bump excitation is studied and analyzed. The functionally graded material properties distribution through the thickness direction is simulated by the power law including the porosity effect. To explore the porosity effects, both classical and adopted porosity models are considered based on even porosity distribution pattern. The dynamic equations of motion are derived based on the Hamiltonian principle. Closed forms of the inertia and material stiffness components are derived. Based on the plane frame isoparametric Timoshenko beam element, the dynamic finite elements equations are developed incorporating joint flexibilities constraints. The Newmark's implicit direct integration methodology is utilized to obtain the transient vibration time response under road bump excitation. The presented procedure is validated by comparing the computational model results with the available numerical solutions and an excellent agreement is observed. Obtained results show that the decrease of porosity percentage and material graduation tends to decrease the deflection as well as the resulting stresses of the control arms thus improving the dynamic performance and increasing the service lifetime of the control arms.

Self-centering passive base isolation system incorporating shape memory alloy wires for reduction in base drift

  • Sania Dawood;Muhammad Usman;Mati Ullah Shah;Muhammad Rizwan
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.531-543
    • /
    • 2023
  • Base isolation is one of the most widely implemented and well-known technique to reduce structural vibration and damages during an earthquake. However, while the base-isolated structure reduces storey drift significantly, it also increases the base drifts causing many practical problems. This study proposes the use of Shape Memory Alloys (SMA) wires for the reduction in base drift while controlling the overall structure vibrations. A multi-degree-of-freedom (MDOF) structure along with base isolators and Shape-Memory-Alloys (SMA) wires in diagonal is tested experimentally and analytically. The isolation bearing considered in this study consists of laminates of steel and silicon rubber. The performance of the proposed structure is evaluated and studied under different loadings including harmonic loading and seismic excitation. To assess the seismic performance of the proposed structure, shake table tests are conducted on base-isolated MDOF frame structure incorporating SMA wires, which is subjected to incremental harmonic and historic seismic loadings. Root mean square acceleration, displacement and drift are analyzed and discussed in detail for each story. To better understand the structure response, the percentage reduction of displacement is also determined for each story. The result shows that the reduction in the response of the proposed structure is much better than conventional base-isolated structure.

Analysis of North Korea's Residential Environment Satisfaction According to Construction Method (건축공법에 따른 북한의 주거환경 만족도 분석 연구)

  • Kim, Eun-Young;Baek, Cheong-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.222-223
    • /
    • 2020
  • Recently, as the era of economic cooperation on the Korean Peninsula approaches, the role of the building sector, such as humanitarian reorganization of North Korean housing, is increasing. The purpose of this study is to find out the current location of North Korean housing standards through the North Korean Housing Survey. For the survey, a survey was conducted through 79 North Korean defectors. The main construction methods of North Korean housing are reinforced concrete, steel framed, wooden framed, masonry, and reinforced concrete walled and prefabricated. The residential environment satisfaction items consist of durability, waterproof, heating, ventilation, heat insulation, air tightness, mining, soundproofing, disaster safety, fire safety, and crime prevention. The result is as follows. The housing construction method in North Korea, which lived at that time, consisted of 21 people (30.88%) of reinforced concrete frames, 18 people (26.47%) of wooden frames, 17 people (25%) of masonry walls, 5 people of prefabricated structures (7.35%), and reinforced concrete. Two people (2.94%) were walled. Among these, the wooden frame type had the lowest satisfaction level for each item, and the reinforced concrete had a high level of dissatisfaction in the items of heating, confidentiality, and disaster safety, and the other item had a high level of satisfaction. The masonry wall type has a relatively high satisfaction level in terms of insulation, confidentiality, mining, and disaster safety.

  • PDF

Out-of-plane performance of infill masonry walls reinforced with post-compressed wedges under lateral-concentrated push load

  • Sanghee Kim;Ju-Hyun Mun;Jun-Ryeol Park;Keun-Hyeok Yang;Jae-Il Sim
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.489-499
    • /
    • 2024
  • Infill masonry walls are vulnerable to lateral loads, including seismic, wind, and concentrated push loads. Various strengthening metal fittings have been proposed to improve lateral load resistance, particularly against seismic loads. This study introduces the use of post-compressed wedges as a novel reinforcement method for infill masonry walls to enhance lateral load resistance. The resistance of the infill masonry wall against lateral-concentrated push loads was assessed using an out-of-plane push-over test on specimens sized 2,300×2,410×190 mm3. The presence or absence of wedges and wedge spacing were set as variables. The push-over test results showed that both the unreinforced specimen and the specimen reinforced with 300 mm spaced wedges toppled, while the specimen reinforced with 100 mm spaced wedges remained upright. Peak loads were measured to be 0.74, 29.77, and 5.88 kN for unreinforced specimens and specimens reinforced with 100 mm and 300 mm spaced wedges, respectively. Notably, a tighter reinforcement spacing yielded a similar strength, as expected, which was attributed to the increased friction force between the masonry wall and steel frame. The W-series specimens exhibited a trend comparable to that of the displacement ductility ratio. Overall, the findings validate that post-compressed wedges improve the out-of-plane strength of infill masonry walls.

A Strain based Load Identification for the Safety Monitoring of the Steel Structure (철골 구조물의 안전성 모니터링을 위한 변형률 기반 하중 식별)

  • Oh, Byung-Kwan;Lee, Ji-Hoon;Choi, Se-Woon;Kim, You-Sok;Park, Hyo-Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2014
  • This study proposes a load identification for the safety monitoring of the steel structure based on measured strain data. Instead of parameterizing the stiffness of structure in the existing system identification researches, the loads on a structure and a matrix (the unit strain matrix) defined by the relationship between strain and load on structure are parameterized in this study. The error function is defined by the difference between measured strain and strain estimated by parameters. In order to minimize this error function, the genetic algorithm which is one of the optimization algorithm is applied and the parameters are found. The loads on the structure can be identified through the founded parameters and measured strain data. When the loads are changed, the unmeasured strains are estimated based on founded parameters and measured strains on changed state of structure. To verify the load identification algorithm in this paper, the static experimental test for 3 dimensional steel frame structure was implemented and the loads were exactly identified through the measured strain data. In case of loading changes, the unmeasured strains which are monitoring targets on the structure were estimated in acceptable error range (0.17~3.13%). It is expected that the identification method in this study is applied to the safety monitoring of steel structures more practically.

Application of a Fictitious Axial Force Factor to Determine Elastic and Inelastic Effective Lengths for Column Members of Steel Frames (강프레임 기둥 부재의 탄성 및 비탄성 유효좌굴길이 산정을 위한 가상축력계수의 적용)

  • Choi, Dong Ho;Yoo, Hoon;Lee, Yoon Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.81-92
    • /
    • 2010
  • In design of steel frames, it is generally believed that elastic system buckling analysis cannot predict real behaviors of structures, while inelastic system buckling analysis can give informative buckling behaviors of individual members considering inelastic material behavior. However, the use of Euler buckling equation with these system buckling analyses have the inherent problem that the methods evaluate unexpectedly large effective lengths of members having relatively small axial forces. This paper proposes a new method of obtaining elastic and inelastic effective lengths of all members in steel frames. Considering a fictitious axial force factor for each story of frames, the proposed method determines the effective lengths using the inelastic stiffness reduction factor and the iterative eigenvalue analysis. In order to verify the validity of the proposed method, the effective lengths of example frames by the proposed method were compared to those of previously established methods. As a result, the proposed method gives reasonable effective lengths of all members in steel frames. The effect of inelastic material behavior on the effective lengths of members was also discussed.

Predicting the stiffness of shear diaphragm panels composed of bridge metal deck forms

  • Egilmez, Oguz O.
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.213-226
    • /
    • 2017
  • The behavior of building industry metal sheeting under shear forces has been extensively studied and equations have been developed to predict its shear stiffness. Building design engineers can make use of these equations to design a metal deck form bracing system. Bridge metal deck forms differ from building industry forms by both shape and connection detail. These two factors have implications for using these equations to predict the shear stiffness of deck form systems used in the bridge industry. The conventional eccentric connection of bridge metal deck forms reduces their shear stiffness dramatically. However, recent studies have shown that a simple modification to the connection detail can significantly increase the shear stiffness of bridge metal deck form panels. To the best of the author's knowledge currently there is not a design aid that can be used by bridge engineers to estimate the stiffness of bridge metal deck forms. Therefore, bridge engineers rely on previous test results to predict the stiffness of bridge metal deck forms in bracing applications. In an effort to provide a design aid for bridge design engineers to rely on bridge metal deck forms as a bracing source during construction, cantilever shear frame test results of bridge metal deck forms with and without edge stiffened panels have been compared with the SDI Diaphragm Design Manual and ECCS Diaphragm Stressed Skin Design Manual stiffness expressions used for building industry deck forms. The bridge metal deck form systems utilized in the tests consisted of sheets with thicknesses of 0.75 mm to 1.90 mm, heights of 50 mm to 75 mm and lengths of up to 2.7 m; which are representative of bridge metal deck forms frequently employed in steel bridge constructions. The results indicate that expressions provided in these manuals to predict the shear stiffness of building metal deck form panels can be used to estimate the shear stiffness of bridge metal deck form bracing systems with certain limitations. The SDI Diaphragm Design Manual expressions result in reasonable estimates for sheet thicknesses of 0.75 mm, 0.91 mm, and 1.21 mm and underestimate the shear stiffness of 1.52 and 1.90 mm thick bridge metal deck forms. Whereas, the ECCS Diaphragm Stressed Skin Design Manual expressions significantly underestimate the shear stiffness of bridge metal deck form systems for above mentioned deck thicknesses.