• 제목/요약/키워드: steel forging

검색결과 198건 처리시간 0.137초

304 스테인리스강의 열간동적재결정과 미세조직 예측 (The Prediction of Dynamic Recrystallization and Grain Size of 304 Stainless Steel during Hot Deformation)

  • 권영표;조종래;이성열;이정환
    • 소성∙가공
    • /
    • 제10권7호
    • /
    • pp.573-578
    • /
    • 2001
  • The flow stress of 304 stainless steel during hot forming process were determined by conducting hot compression tests at the range of 1273 K∼1423 K and 0.05 /s∼2.0 /s as these are typical temperature and strain rate in hot forging operation. In this material, Dynamic recrystallization was found to be the major softening mechanism with this conditions as Previous studies. Based on the observed phenomena, a constitutive model of flow stress was assumed as a function of strain, strain rate, temperature. In the constitutive model, the effects of strain hardening and dynamic recrystallization were taken into consideration. A finite element method connected to constitutive model was performed to predict the dynamic recrystallization behaviors and also stress-strain curves in hot compression of 304 stainless steel.

  • PDF

고강도 고인성 내마모강의 제조기술 (The Production Technology of High Strength and High Toubhness Wear Resistance Steel)

  • 신정호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.163-166
    • /
    • 2000
  • The production technology of high strength and toughness wear resistance steel involves attempt to application of severe wear parts for the construction machinery. A well balanced alloy content ensures that optimum tensile properties are achieved for the high strength. After high temperature deformation like as rolling or forging it has bainite microstructure and lower yield rato(under 80%) The effectiveness of the research approach is illustrated with experimental results on good steel cleanliness(O2 :12.2 ppm, 0,004% S, 0.008%, P nonmetalic inclusion dT: 0.10) and excellent mechanical properties (TS$\geq$140kgf/mm2 El $\geq$10% IV$\geq$20j/cm2) Therefore this should be wear resistance steel which develops high strength and high toughness without heat treatment

  • PDF

냉간단조 생산성 향상 사례 (Case studies for productivity enhancement on cold forging)

  • 최석탁;이일환;권용철;이정환;이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.42-47
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. Therefore, a tool life is one of the important issues on cold forging industry. However, since variables related with tool life are many complicated, the studies for solution should be investigated by the systematic research approach. The shape and process changes of die, the hardness changes of material and the tolerance of dies to decrease the die stress are analyzed by the FEM software. The heat-treatment of tool material is investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, it is investigated that the shape and dimension of tool give effect into both tool life and quality of forged product..

  • PDF

Al 합금 컨트롤 암의 제조 공정 비교 연구 (Processing Comparison for Fabrication of Al Control Arm)

  • 권용남;이영선;이정환
    • 소성∙가공
    • /
    • 제15권7호
    • /
    • pp.490-495
    • /
    • 2006
  • The application of Al parts in passenger car has been increasing for the last decade, which gives many advantages such as better fuel efficiency, driving performance and safety. Control arm is one of the most preferably substituted parts from steel into Al alloys among numerous automotive parts. Currently, both wrought and cast Al alloys can find the application for control arm in passenger car. The balance between performance and cost determines a material as well as a fabrication process for a particular part model. In the present study, comparison among various processing techniques has been carried out to build up a data base for Al control arm fabrication.

Advancement in Powder Metallurgy of Aluminum Alloys

  • Takeda, Yoshinobu
    • 한국분말재료학회지
    • /
    • 제5권4호
    • /
    • pp.340-344
    • /
    • 1998
  • Along with the growth of conventional ferrous powder metallurgy (PM), PM of aluminum alloys has been intensively investigated in Japan. Although rapidly solidified aluminum alloy powder was first used in the USA,/sup 1)/ commercialization for consumer market was first realized in Japan./sup 2)/ In order to achieve the viable cost-performance including Near Net Shape (NNS) formability, we developed three processes, powder extrusion, powder forging and sintering. The new powder extrusion process does not use either capsulation or vacuum degassing. The new powder forging does not need lateral flow. The new sintering process does not use liquid phase. The performance achieved by the processes is outstanding mechanical or physical properties that has potential to substitute cast iron, steel, titanium Metal Matrix Composite (MMC) or Ingot Metallurgy (IM) aluminum alloys. Cooperation with customers, powder suppliers and research associations contributed to the advancement of PM aluminum alloys in Japan.

  • PDF

High Fatigue Strength with Better Machinability Material for Powder Forged Connecting Rod

  • Suzuki, Hironori;Sawayama, Tetsuya;Ilia, Edmond;Tutton, Kevin
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.776-777
    • /
    • 2006
  • The powder forging (PF) process is used to produce fully dense powder metallurgy (PM) parts for high performance automotive applications. PF connecting rods have been widely accepted in the US, Japan, and other countries due to higher performance and lower manufacturing costs when compared to conventionally forged steel connecting rods [1]. In order to meet and exceed requirements for higher fatigue strength and better machinability of PF connecting rods, a newly developed machinability enhancer, named KSX, was introduced [2]. A comparison study between powder forged materials prepared with 0.3% MnS and with 0.1% KSX additions showed excellent properties in the case of the mix with KSX.

  • PDF

냉간 단조 공정의 유한 요소 해석에 기반한 WC-Co 초경 금형의 파손 위험 영역 평가 (Potential Damage Region Investigation of WC-Co Cemented Carbide Die Based on Finite Element Analysis of Cold Forging Process)

  • 류성현;정선호;정헌영;김경일;조규섭;노우람
    • 소성∙가공
    • /
    • 제31권6호
    • /
    • pp.376-383
    • /
    • 2022
  • The potential damage region of a WC-Co cemented carbide die is investigated for cold forging process of a wheel-nut by numerical simulation with its chemical composition considered. Numerical simulation is utilized to calculate internal stress, especially for the WC-Co die, during the forging process. Finite element model is established, in which the elasto-plastic properties are applied to the work-piece of bulk steel, and elastic properties are considered for the lower die insert of the WC-Co alloy. This stress analysis enables to distinguish the potential damage regions of the WC-Co die. The regions from calculation are comparatively analyzed along with the crack area observed in the die after repetitive manufacturing. Effect of chemical composition of the WC-Co is also evaluated on characteristics of potential damage region of the die with variance of mechanical properties considered. Derived from Mohr-Coulomb fracture model, furthermore, a new stress index is presented and used for die stress analysis. This index inherently considers hydrostatic pressure and is then capable of deducing wide range of its distribution for representing stress state by modification of its parameter implying pressure sensitivity.

차량용 에어컨 압축기의 선조질강 헤드 볼트 개발에 대한 연구 (A Study on Development of Pre-heat Treated Steel Head Bolt for Swashplate Type Compressor of Car Air-conditioner)

  • 김영신;김호겸;황승용;김영만
    • 한국자동차공학회논문집
    • /
    • 제24권5호
    • /
    • pp.588-595
    • /
    • 2016
  • This paper is a study on head bolts that are used in A/C compressors to reduce production cost and solve leak problems on the head bolt seat area that causes massive intermittent malfunctioning during production. In this study, the pre-heat treated steel, which was used as a material in the head bolt, eliminated the heat treatment process after forging. The pre-heat treated steel head bolts, which have 10 % lower tensile strength than the conventional SCM 435 head bolts, were selected after considering the results of creeping rupture properties, axial force, and stress concentration per tensile strength variation. Then, the performance test and the durability test with the A/C compressor that was assembled with the pre-heat treated steel head bolts were performed and verified. Based on the results, the pre-heat treated steel head bolts developed in this study saved 7.3 % in production cost by eliminating the heat treatment process and the logistics process. Furthermore, the leak problem on the head bolt seat area in the A/C compressor was addressed significantly on the mass production assembly line.

고질소강의 열간압연시 변형거동 및 압연효과 (Deformation Behavior & Rolling Effect on the Hot Rolling of High Nitrogen Stainless Steel)

  • 김영득;김동권;이종욱;배원병
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.329-332
    • /
    • 2008
  • Nowadays, It is required human body-friendly, good mechanical properties, and economical efficiency material, simultaneously. The material to meet above requirement condition rear up high nitrogen stainless steel(HNS). However, HNS have a lot of problem such as poor workability, hot crack sensitivity. So, It is needed the condition of plastic working to overcome above many problem. In this study, VIM ingot with 100kg was made by pressurized vacuum induction melting. And then, The slab perform for hot rolling was prepared by open-die forging. Hot rolling process was performed by computer simulation according to change of height reduction, rolling temperature, heating numbers, rolling pass and so forth. The results of analysis were investigated between analysis and lab-scale rolling product.

  • PDF

페라이트상을 갖는 12Cr 내열강의 기계적성질에 미치는 템퍼링 처리의 영향 (Effect of tempering treatment on the mechanical properties in 12Cr heat resistant steel with ferrite phase)

  • 강창룡;이상명;조영관;변삼섭;정병호
    • 동력기계공학회지
    • /
    • 제15권2호
    • /
    • pp.49-54
    • /
    • 2011
  • Effect of tempering treatment on the mechanical properties of 12Cr heat resistant steel with ferrite phase was investigate in this study. As time and temperature of tempering treatment were increase, C and Cr contents in matrix structure were decreased. Due to increase of the amount of Cr26C6 type carbides. It was confirmed in mechanical properties experimental that tensile strength and hardness were decreased, while elongation and impact value were, increased with increasing the time and temperature.