• Title/Summary/Keyword: steel fibrous

Search Result 56, Processing Time 0.033 seconds

Fracture Charateristics of the Pre-Cracked fibrous Concrete Beams (前 龜裂을 준 鋼纖維 콘크리트보의 破壞特性)

  • Kwark, Kae-Hwan;Park, Jong-Gun;Park, Sai-Woong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.2
    • /
    • pp.49-59
    • /
    • 1992
  • In our researches we made mix-design, with the mixing ratio and pre-cracked ratio of steel fibrous different from each other, building the steel fibrous concrete beam which had pre-cracks. To obtain the fracture characteristics of steel fibrous reinforced concrete, series of experiment were conducted on pre-cracked beam subjected to 3-point bending. Thus, we carried out experiments on the destructive characteristics of its pre-crack and post-crack and the result is as follows. 1. The compressive strength of steel fibrous concrete beam increased more slightly than plane beam, and the tensile strength increased 37%, 59%, 94% and 121% respectively when the amount of fibrous was 0.5%, 0.1% 1.5%, and 1.75% respectively. 2. As the amount of steel fibrous mixing increased ant the steel fibrous inhibited the crack growth, the crack condition of steel fibrous concrete beam was retarded irregularly, and this increased fracture load. 3. The defiance of destruction was reduced in the ratio of 1.35 times and 1.22 times respectively when the length of pre-crack was each 2cm and 4cm in comparison with the case of being without the length, and was similar to that of plane beam when the amount of steel fibrous mixing was below 1.0%, and increased linearly when it as above 1.0%. 4. The experimental formula seeking fracture energy was follows and thus we found that the value of fracture energy depended upon tensile strength and the size of speciment. $G_f=K\;{\cdot}\;f_f^'{\cdot}$da/Ec 5. We observed that in the load-strain curve of steel fibrous concrete beam the progress of the crack became slow, compared with plane beam because the crack condition became long to the extent of about 10 times. Concrete was faultiest brittleness fracture through the study, it was known ductile.

  • PDF

Shear Strength of High Strength Concrete Beams with Steel Fibrous (강섬유를 혼입한 고강도 콘크리트 보의 전단강도)

  • 곽계환;박종건;정태영
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.23-30
    • /
    • 2000
  • The purpose of this paper is to study on the shear strength of high strength concrete beams with steel fibrous. In general, the shear strength of reinforced concrete beams is affected by the compressive strengths of concrete( c), the shear span-depth ratio(a/d), the longitudinal steel ratio($\rho$ $\omega$), and shear reinforcement. An experimental investigation of the shear strength of high strength concrete beams with steel fibrous was conducted. In each series the shear span-depth ratio(a/d) was held constant at 1.5, 2.8, or 3.6, while concrete strengths were varied from 320 to 520, to 800kgf/$\textrm{cm}^2$. To verify the proposed equations the experimental results were compared with those from other researches such as equation of ACI code 318-95 or equation of Zsutty. To deduce equation for shear strength from experimental data carried out MINITAP program. According to the experimental results, the addition of steel fibrous has increased the deflection and strain at failure load, improving the brittleness of the high strength concrete.

Corrosion Resistance of Super Duplex Stainless Steel (수퍼 2상 스테인리스강의 부식 저항성에 관한 연구)

  • 강흥주;남기우;안석환;강창룡;도재윤;박인덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.40-46
    • /
    • 2003
  • The corrosion resistance of super duplex stainless steel on both its fibrous and dispersed phase was investigated. These structures consist of various volume fraction and distribution of austenite structure, which were obtained by changing the heat treatment temperature and cycle. The fibrous phase had higher austenite volume fraction than that of the dispersed phase at the same temperature. Corrosion resistance of super duplex stainless steel was evaluated through an immersion test and an impingement test, using 35% HCI and sea water, respectively. Super duplex stainless steel was compared with STS316L and STS304. The corrosion resistance of super duplex stainless steel was superior to ST316L and STS304. The dispersed phase of super duplex stainless steel was more stabilized than the fibrous phase in corrosion. The magnitude of corrosion rate was in order STS304, STS316L, fibrous phase of super duplex stainless steel and dispersed phase of super duplex stainless steel.

A Study on the Prediction Fatigue Life of Two-Span Beams with Steel Fibrous (강섬유를 혼입한 2경간 연속보의 피로수명 예측에 관한 연구)

  • 곽계환;김원태;이진성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.375-382
    • /
    • 2001
  • This study is attempted to predict experimentally the fatigue crack propagation behavior of two-span beams with steel fibrous for various steel fibrous contents. The static tests and the fatigue tests were performed on a series of SFRC(steel fibrous reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fibrous contents. Through this test, the diagonal cracking loads, ultimate loads, deflections, strains of concrete and steels. Fatigue crack length were measured by the eye-observation. As a result of test, A model for S-N relationship, and propagation life of fatigue crack of SFRC was proposed. The crack growth and failure of SFRC beams were studied.

  • PDF

Mechanical Characteristics and Fatigue Crack Propagation of Super Duplex Stainless Steel by Distribution of Austenite (오스테나이트 분포에 따른 수퍼 2상 스테인리스강의 기계적 특성과 피로균열 진전거동)

  • Do, J.Y.;Lee, S.K.;Ahn, S.H.;Nam, K.W.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.4
    • /
    • pp.205-211
    • /
    • 2001
  • The characteristics of super duplex stainless steel were investigated on its fibrous structure and dispersed structure. These structures consist of various volume fractions and distributions of the austenite phase that were obtained by changing the heat treatment temperature and cycle. The fibrous structure had higher austenite volume fraction than dispersed structure on the same temperature. As the austenite volume fraction increased in both structures, tensile strength and elongation increased, but hardness decreased. Fatigue life of fibrous structure parallel to rolling direction was shorter than that of perpendicular to rolling direction. Fatigue life of dispersed structure was longer than parallel fibrous structure, and shorter than perpendicular fibrous structure. Fatigue crack propagation rate of fibrous structure was faster than that of dispersed structure.

  • PDF

Generalization of shear truss model to the case of SFRC beams with stirrups

  • Colajanni, Piero;Recupero, Antonino;Spinella, Nino
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.227-244
    • /
    • 2012
  • A theoretical model for shear strength evaluation of fibrous concrete beams reinforced with stirrups is proposed. The formulation is founded on the theory of plasticity and the stress field concepts, generalizing a known plastic model for calculating the bearing capacity of reinforced concrete beams, to the case of fibrous concrete. The beneficial effect of steel fibres is estimated taking into account the residual tensile strength of fibrous concrete, by modifying an analytical constitutive law which presents a plastic plateau as a post-peak branch. Around fifty results of experimental tests carried out on steel fibrous concrete beams available in the literature were collected, and a comparison of shear strength estimation provided by other semi-empirical models is performed, proving that the numerical values obtained with the proposed model are in very good agreement with the experimental results.

A Study on Carbon Fiber Sheet Rehabilitation of High Strength Reinforced Concrete Beams Mixed Steel Fibrous (강섬유를 혼입한 고강도 콘크리트 보의 탄소섬유쉬트 보강에 관한 연구)

  • 곽계환;곽경헌;정태영;고성재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.491-496
    • /
    • 2001
  • In recent years, the research and development about the new material proceed rapidly and actively in the building industry. As building structures become bigger, higher and more specialized, so does the demand for material with higher strength. In the future, we will need to research repair and rehabilitation to make high strength concrete mixed steel fibrous building safe. The carbon fiber reinforced plastic bonding method is widely used in reinforcing the existing concrete structure among the various methods. The repair of initiate loaded reinforced high-strength concrete beams mixed steel fibrous with epoxy bonded Carbon Fiber Sheets(CFS) was investigated experimentally. The CFS thickness and length were varied to assess the peel failure at the curtailment of CFS, The behaviour of the repaired beams was represented by load-longitudinal steel strain relation and failure modes were discussed. The test results indicate that CFS is very effective for strengthening the demand beams and controlling deflections of reinforced high strength concrete beams mixed steel fibrous happen diagonal crack, the increase in the number of CFS layers over two layers didn't effect the increase in the strength of beams.

  • PDF

Development of Tension Stiffening Models for Steel Fibrous High Strength Reinforced Concrete Members (강섬유보강 고강도 철근콘크리트 부재의 인장강성모델 개발)

  • 홍창우;윤경구;이정호;박제선
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.35-46
    • /
    • 1999
  • The steel fiber reinforced concrete may affect substantially to the tension stiffening at post cracking behavior. Even if several tension stiffening models exist, they are for plain and normal strength concrete. Thus, the development of tension stiffening models for steel fibrous high strength RC members are necessary at this time when steel fiber reinforced and high strength concretes are common in use. This paper presents tension stiffening effects from experimental results on direct tension members with the main variables such as concrete strength, concrete cover depth, steel fiber quantity and aspect ratio. The comparison of existing models against experimental results indicated that linear reduced model closely estimated the test results at normal strength level but overestimated at high strength level. Discontinuity stress reduced model underestimated at both strength levels. These existing models were not valid enough in applying at steel fibrous high strength concrete because they couldn't consider the concrete strength nor section area. Thus, new tension stiffening models for high strength and steel fiber reinforced concrete were proposed from the analysis of experimental results, considering concrete strength, rebar diameter, concrete cover depth, and steel fiber reinforcement.

Deduction On Fatigue Strength of Two Span Continuous Beams with Steel Fibrous (강섬유를 혼입한 2경간 연속보의 피로강도 추정)

  • 곽계환;곽경헌;정태영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.359-364
    • /
    • 2001
  • Recently structural damage has been frequently observed in reinforced concrete bridges due to repeted ioads such as vehicular traffic and due to continual overloads by heavy trucks. Therefore. In this study, the static tests and the fatigue tests were performed on a series of SFRC(steel fibrous reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fibrous contents. Through this test, the diagonal cracking loads, ultimate loads, deflections, strains of concrete and steel. On this basis, the crack growth and failure of SFRC beams were studied, and a model for S-N relationship of SFRC was proposed.

  • PDF

An Experimental Study on Shear Behavior of Polymer-Steel Fibrous High Strength Concrete Beams (폴리머-강섬유를 혼입한 고강도 콘크리트보의 전단거동에 관한 실험적 연구)

  • 곽계환;조선정;김원태;조한용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.601-608
    • /
    • 2000
  • Steel fiber and Polymer are used widely for the reinforcement material of RC structures because of its excellence of durability, serviceability as well as mechanical properties. Polymer-Steel fibrous high strength concrete beam's input ratio are 1.0%. The shear span-to-depth ratio are 1.5, 2.8 and 3.6, compressive strength of specimens 320kg/㎠, 436kgf/㎠ and 520kgf/㎠ in 28 days. The static test was carried out to measure the ultimate load, the initial load of flexural crack and of diagonal crack, from which crack patte군 and fracture modes are earned. Also, stress-strain, load-strain and load-deflection are examined during the test cracks(shear crack, flexural crack, and diagonal tension crack), when the load values are sketched according to the growth of crack. Result are as follows; (1) The failure modes of the specimens increase in rigidity and durability in accordance with the increase of mixing steel fiber and polymer. (2) The load of initial crack was the same as the theory of shear-crack strength (3) Polymer-Steel fibrous high strength concrete beams have increased the deflection and strain at failure load, improving the brittleness of the high strength concrete. (4) In this result of study, an additional study need to make a need formular because the study is different from ACI formular and Zsutty formular.

  • PDF