• Title/Summary/Keyword: steel fiber reinfored concrete

Search Result 3, Processing Time 0.021 seconds

Mechanical Properties of Steel Fiber Reinforced Concrete Using Waste Glass (폐유리를 혼입한 강섬유보강 콘크리트의 역학적 특성)

  • 박승범;이봉춘
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1032-1039
    • /
    • 2002
  • Since recycling waste glass as a material for concrete has a great advantage environmentally and economically, the US, Japan and other countries have started recycling waste glass widely and accumulating the technology of manufacturing equipment and its construction. However, there is no practical data on the mechanical property of concrete using waste glass. In this study, the mechanical property of the steel fiber reinforced concrete using waste glass was analyzed in terms of waste glass content(20vo1. %, 40vo1. % as a part of fine aggregate) and steel fiber content(0.5~ 1.5vol.%). The results of this study are as follows : The workability of the concrete including steel fiber and waste glass decreases, as the inclusion rate of waste glass and steel fiber increases. The tensile strength, flexural strength and flexural toughness of the concrete including waste glass increase considerably, as the inclusion rate of steel fiber increases. From the results, the appropriate inclusion rate of steel fiber and waste glass is thought to be 1.0vol. % and 20vo1. %, respectively.

Mechanical Properties of Fiber Reinforced Concrete According to Steel Fiber Dispersion (강섬유의 분포 특성에 따른 섬유보강 콘크리트의 역학적 특성)

  • Lee, Bang-Yeon;Kang, Soo-Tae;Kim, Yun-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.921-924
    • /
    • 2008
  • Several techniques, including transmission X-ray photography and AC-impedance spectroscopy, are available for evaluating the fiber dispersion in a fiber reinforced concrete Evaluating the fiber dispersion in fiber reinfored concrete needs since the fibers bridge crackseffectively. However, these equipment is very expensive. Therefore this paper presents the quantitative evaluation method based on the image analysis of sectional image taken using an ordinary digital camera. After detecting the fiber accurately, the fiber dispersion characteristics are represented by the coefficient such as the fiber dispersion coefficient, the number of fibers in unit area, and the distribution of the fiber orientation. Test were performed to evaluate the effectiveness of proposed method and the dispersion characteristics of fibers according placing method and flow direction. Additionally, the effect of fiber dispersion characteristics on mechanical properties was investigated. Test results shows that fiber aligned along the flow direction and more fibers placed and dispersion was better on the section parallel to the flow direction. And about 50% difference in the flexural tensile strength according to the placing method occured.

  • PDF

Comparative Study of Design Codes on the Transverse Steel Amount of Circular Reinfored Concrete Columns (철근콘크리트 원형단면교각의 횡방향철근량에 관한 설계비교)

  • 배성용;곽동일;김희덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.98-103
    • /
    • 2001
  • This paper is conducted to compare the seismic design standard of a bridge column such as the Korean Bridge Design Standard(KBDS), EC 8, NZS 3101 and ATC 32. The KBDS adopted the seismic design requirements in 1992. The earthquake magnitude in Korea is compared with those in the west coast of the USA. It may be said that the current seismic design requirements of the KBDS provides design results, that are too conservative especially for transverse reinforcement details and amounts in reinforced concrete columns. This fact usually creates construction problems in concrete casting, due to congestion of transverse reinforcement. Furthermore, the effective stiffness; $I_{eff}$ depends on both the axial load P/$A_gF_{ck}$ and the longitudinal reinforcement ratio $A_{st}/A_g, so it is the conservative to use the effective stiffness I$_{eff}$ than the gross section stiffness Ig. Seismic design for the transverse reinforcement content of the concrete column was analyzed and considered to have an extreme-fiber compression strain, response modification factor, axial load and effective stiffness etc.c.

  • PDF