• Title/Summary/Keyword: steel fiber factor

Search Result 104, Processing Time 0.397 seconds

The influence of magnetic field on the alignment of steel fiber in fresh cementitious composites

  • Li, Hui;Li, Lu;Li, Lin;Zhou, Jian;Mu, Ru;Xu, Mingfeng
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.323-337
    • /
    • 2022
  • This paper proposes a numerical model to simulate the rotational behavior of steel fiber in fresh cement-based materials in the presence of a magnetic field. The results indicate that as the aspect ratio of fiber increases, the required minimum magnetic field intensity to make fiber rotate in viscous fluid increases. The optimal magnetic field intensity is 0.03 T for aligning steel fiber in fresh cement-based materials to ensure that the applying time of the magnetic field can be conducted concurrently with the vibrating process to increase the aligning efficiency. The orientation factor of steel fiber in cement mortar can exceed 0.85 after aligning by 0.03 T of the uniform magnetic field. When the initial angle of the fiber to the magnetic field direction is less than 10°, the magnetic field less than 0.03 T cannot make the fiber overcome the yield stress of fluid to rotate. The coarse aggregate in steel fiber-reinforced concrete is detrimental to the rotation and alignment of the steel fiber. But the orientation factor of ASFRC under the 0.03T of the magnetic field can also exceed 0.8, while the orientation factor of SFRC without magnetic field application is around 0.6.

The Overall Investigation of Steel Fiber Strengthening Factor in Shear (전단에 대한 강섬유 보강계수의 종합적 고찰)

  • Lee, Hyun-Ho;Kwon, Yeong-Ho;Lee, Hwa-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.251-254
    • /
    • 2005
  • This study will have to define the shear strengthening effects of steel fiber in beam and column levels, as well as to suggest estimation method of maximum shear capacity of structural members. From review of literature surveys and perform structural member test results, following conclusion can be made; In beam level, steel fiber strengthening factor is suggested from the tensile splitting test results and beam test results. After suggesting shear capacity of beam without stirrups and beam with stirrups by proposed steel fiber strengthening factor, proposed equation is possible to evaluate the shear capacity of beam. In column level, with column test results and proposed steel fiber strengthening factor, shear capacity equation of steel fiber reinforced concrete in column is suggested.

  • PDF

Evaluation of Shear Strength in SFRC Beam without Stirrups Considering Steel Fiber Strengthening Factor (강섬유 보강계수를 고려한 전단보강 되지 않은 SFRC 보의 전단내력 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.213-220
    • /
    • 2004
  • The purpose of this study is to evaluate the shear strength of SFRC beam that has no stirrups by steel fiber strengthening factor. To achieve the goal of this study, two stage investigation, which is material and member level, is studied with literature and experimental side. From the reviewing of previous researches and analyzing of material and member test results, strengthening parameter of SFRC is defined as steel fiber coefficient. Based on above results, steel fiber strengthening factor is proposed. And by reviewing the proposed equation of shear strength estimation, equation of Shin was well estimated the shear strength of SFRC beams. Therefore, shear strength equation of SFRC, which is composed by Shin's Eq. and steel fiber strengthening factor, is proposed by regression analysis of test results.

Characteristic Strength and Deformation of SFRC Considering Steel Fiber Factor and Volume fraction (강섬유 계수 및 혼입률을 고려한 SFRC의 강도 및 변형 특성)

  • Lee Hyun-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.759-766
    • /
    • 2004
  • The addition of steel fiber with concrete significantly improves the engineering properties of structural members, notably shear strength. The purpose of this study is to determine the steel fiber shape, aspect ratio and volume fraction ratio in a point of practical usage as structural members. Steel fiber factor and volume fraction are also considered to verify the strengthening effect in member level. From the reviewing of previous researches and analyzing of consecutive material test results, the optimum shape and length of steel fiber, which can have a good strengthening effects were defined as a hooked end type and larger than 1.5 times of maximum gravel size. Analyzing the test results of strength and deformation capacity, aspect ratio 75 and volume fraction $1.5\%$ can be having a maximum strengthening effect of steel fiber. Also steel fiber factor, tensile splitting strength, and flexural strength are found as key parameter in shear strengthening effect in member level.

Design Equation for Punching Shear Capacity of SFRC Slabs

  • Higashiyama, Hiroshi;Ota, Akari;Mizukoshi, Mutsumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2011
  • In this paper, a design equation for the punching shear capacity of steel fiber reinforced concrete (SFRC) slabs is proposed based on the Japan Society of Civil Engineers (JSCE) standard specifications. Addition of steel fibers into concrete improves mechanical behavior, ductility, and fatigue strength of concrete. Previous studies have demonstrated the effectiveness of fiber reinforcement in improving the shear behavior of reinforced concrete slabs. In this study, twelve SFRC slabs using hooked-ends type steel fibers are tested with varying fiber dosage, slab thickness, steel reinforcement ratio, and compressive strength. Furthermore, test data conducted by earlier researchers are involved to verify the proposed design equation. The proposed design equation addresses the fiber pull-out strength and the critical shear perimeter changed by the fiber factor. Consequently, it is confirmed that the proposed design equation can predict the punching shear capacity of SFRC slabs with an applicable accuracy.

Optimum mixture of high performance hybrid fiber reinforced concrete using fractional experimental design by orthogonal array (일부실시 직교배열 실험설계에 의한 고성능 하이브리드 섬유보강 콘크리트 배합 최적화)

  • Park, Tae-Hyo;Noh, Myung-Hyun;Park, Choon-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.341-344
    • /
    • 2004
  • In the present research, slump, modulus of rupture (MOR) and flexural toughness $(I_{30})$ of high performance hybrid fiber reinforced concrete (HPHFRC) mixed with micro-fiber (carbon fiber) and macro-fiber (steel fiber) and replaced with silica fume were assessed with the analysis of variance (ANOVA). Steel fiber was a considerable significant factor in aspect of the response values of MOR and boo Based on the significance of factors related to response values from ANOVA, following assessments were available; Slump decrease: carbon fiber >> steel fiber > silica fume; MOR: steel fiber > silica fume > carbon fiber; $I_{30}$: steel fiber > carbon fiber > silica fume. Steel fiber $1.0\%$, carbon fiber $0.25\%$ and silica fume $5.0\%$, and Steel fiber $1.0\%$, carbon fiber $0.25\%$ and silica fume $2.5\%$ were obtained as the most optimum mixture.

  • PDF

Shear Capacity Estimation of SFRC Beam with Stirrups Considering Steel Fiber Strengthening Factor (강섬유 보강계수를 사용한 전단보강 SFRC보의 전단내력 예측)

  • Lee Hyun Ho;Keon Young Ho;Lee Hwa Jin;Hur Moo Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.260-263
    • /
    • 2004
  • The purpose of this study is to estimate the shear strength of SFRC beam that has stirrups. To achieve the goal of this study, two stage investigation, which is material and member level, is studied. From the reviewing of previous researches and analyzing of material and member test results, strengthening parameter of SFRC is defined as steel fiber coefficient. Based on above results, steel fiber strengthening factor is proposed. Therefore, shear strength equation of SFRC, which is considered the steel fiber strengthening factor, is proposed by regression analysis of test results.

  • PDF

Characteristics of Fracture Energy on Steel Fiber-Reinforced Lightweight Polymer Concrete

  • Youn, Joon-No;Sung, Chan-Yong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.11-19
    • /
    • 2003
  • In this study, unsaturated polyester resin, artificial lightweight coarse aggregate, artificial lightweight fine aggregate, heavy calcium carbonate and steel fiber were used to produce a steel fiber-reinforced lightweight polymer concrete with which mechanical properties were examined. Results of this experimental study showed that the flexural strength of unnotched steel fiber-reinforced lightweight polymer concrete increased from 8.61 to 13.96 MPa when mixing ratio of fiber content increased from 0 to 1.5%. Stress intensity factors($K_{IC}$) increased with increasing fiber content ratio while it did not increase with increasing notch ratio. Energy release rate ($G_{IC}$) turned out to depend upon the notch size, and it increased with increasing steel fiber content.

Characterization of Reinforcing Efficiency in Hybrid Fiber Reinforced Cementitous pastes (하이브리드 섬유보강 시멘트 페이스트의 보강효율에 대한 특성화)

  • Park, Tae-Hyo;Noh, Myung-Hyun;Park, Choon-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.644-647
    • /
    • 2004
  • Modulus of rupture (MOR) and flexural toughness in hybrid fiber reinforced cement pastes mixed with micro-fiber (carbon fiber) and macro-fiber (steel fiber) and replaced with silica fume according to the fixed ratio were researched. Reinforcing efficiency in specimens were estimated by two factors, such as strengthening factor $(F_s)$ and toughening factor $(F_t)$, which were calculated from the analysis of variance (ANOVA) of the response values, such as MOR and absorbtion energy $(W_0)$. According to the experimental design by the fractional orthogonal array, nine hybrid fibrous reinforced paste series and one non-reinforced control paste were manufactured. Specimens of each series were tested by the INSTRON Inc. 8502(model) equipment in three-points bending and then measured the load-deflection response relationships. Considerable strengthening of cement pastes resulted in' the case of other factors without carbon fiber and toughening of cement pastes about all factors showed high. Based on the significance of factors related to response values from ANOVA, following assessments were available; $F_s$ or MOR: silica fume $\gg$ steel fiber $\gg$ carbon fiber; $F_t\;or\;W_0$: steel fiber > carbon fiber > silica fume. Optimized composition condition was estimated by steel fiber of $1.5\%$, carbon fiber of $0.5\%$ and silica fume $7.5\%$ in side of strengthening and steel fiber of $1.5\%$, carbon fiber of $0.75\%$ and silica fume $7.5\%$ in side of toughening.

  • PDF

Stress intensity factors for double-edged cracked steel beams strengthened with CFRP plates

  • Wang, Hai-Tao;Wu, Gang;Pan, Yu-Yang;Zakari, Habeeb M.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.629-640
    • /
    • 2019
  • This paper presents a theoretical and finite element (FE) study on the stress intensity factors of double-edged cracked steel beams strengthened with carbon fiber reinforced polymer (CFRP) plates. By simplifying the tension flange of the steel beam using a steel plate in tension, the solutions obtained for the stress intensity factors of the double-edged cracked steel plate strengthened with CFRP plates were used to evaluate those of the steel beam specimens. The correction factor α1 was modified based on the transformed section method, and an additional correction factor φ was introduced into the expressions. Three-dimensional FE modeling was conducted to calculate the stress intensity factors. Numerous combinations of the specimen geometry, crack length, CFRP thickness and Young's modulus, adhesive thickness and shear modulus were analyzed. The numerical results were used to investigate the variations in the stress intensity factor and the additional correction factor φ. The proposed expressions are a function of applied stress, crack length, the ratio between the crack length and half the width of the tension flange, the stiffness ratio between the CFRP plate and tension flange, adhesive shear modulus and thickness. Finally, the proposed expressions were verified by comparing the theoretical and numerical results.