• 제목/요약/키워드: steel column

검색결과 1,908건 처리시간 0.029초

Cyclic tests on bolted steel and composite double-sided beam-to-column joints

  • Dubina, Dan;Ciutina, Adrian Liviu;Stratan, Aurel
    • Steel and Composite Structures
    • /
    • 제2권2호
    • /
    • pp.147-160
    • /
    • 2002
  • This paper summarises results of the research performed at the Department of Steel Structures and Structural Mechanics from the "Politehnica" University of Timisoara, Romania, in order to evaluate the performance of beam-to-column extended end plate connections for steel and composite joints. It comprises laboratory tests on steel and composite joints, and numerical modelling of joints, based on tests. Tested joints are double-sided, with structural elements realised of welded steel sections. The columns are of cruciform cross-section, while the beams are of I section. Both monotonic and cyclic loading, symmetrically and antisymmetrically, has been applied. On the basis of tested joints, a refined computer model has been calibrated using a special connection element of the computer code DRAIN 2DX. In this way, a static/dynamic structural analysis of framed structures with real characteristics of the beam to column joints is possible.

Axial strengthening of RC columns by direct fastening of steel plates

  • Shan, Z.W.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.705-720
    • /
    • 2021
  • Reinforced concrete (RC) columns are the primary type of vertical support used in building structures that sustain vertical loads. However, their strength may be insufficient due to fire, earthquake or volatile environments. The load demand may be increased due to new functional usages of the structure. The deformability of concrete columns can be greatly reduced under high axial load conditions. In response, a novel steel encasement that distinguishes from the traditional steel jacketing that is assembled by welding or bolt is developed. This novel strengthening method features easy installation and quick strengthening because direct fastening is used to connect the four steel plates surrounding the column. This new connection method is usually used to quickly and stably connect two steel components by driving high strength fastener into the steel components. The connections together with the steel plates behave like transverse reinforcement, which can provide passive confinement to the concrete. The confined column along with the steel plates resist the axial load. By this way, the axial load capacity and deformability of the column can be enhanced. Eight columns are tested to examine the reliability and effectiveness of the proposed method. The effects of the vertical spacing between adjacent connections, thickness of the steel plate and number of fasteners in each connection are studied to identify the critical parameters which affect the load bearing performance and deformation behavior. Lastly, a theoretical model is proposed for predicting the axial load capacity of the strengthened RC columns.

콘크리트 충전원형강관기둥의 부착응력에 있어 shear-connector의 영향에 관한 실험적 연구 (An experimental study about an effect of shear-connector at a bond stress in concrete filled circular steel tubular column)

  • 박성무;김성수;김원호;이형석;이우진;김경모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.567-572
    • /
    • 2001
  • A transmission of load that is transmitted by beam in steel beam-column joint depends on bond strength between concrete and steel tube. But it is different to transmit a load efficiently in the established concrete filled steel tubular column. Therefore, shear-connector is demanded for a reinforcement about a transmission of load. An ascent of bond stress and a transmission of load after debonding are expected by a reinforcement of shear-connector.

  • PDF

파형강관 내부 구속 중공 철근 콘크리트 기둥의 내진 성능 (Seismic Performance of Internally Confined Hollow RC Column with Corrugated Steel Tube)

  • 한택희;김종민;강준석;강영종
    • 한국방재학회 논문집
    • /
    • 제8권2호
    • /
    • pp.31-38
    • /
    • 2008
  • 파형강관으로 내부 구속된 중공 철근콘크리트 기둥(파형강관 내부 구속 중공 RC 기둥, ICH RC-CT column ; Internally Confined Hollow RC column with a Corrugated Steel Tube)의 내진 성능 평가 실험을 수행하였다. 준정적 실험을 통하여 ICH RC-CT 기둥과 일반 중실 RC 기둥의 내진 성능을 비교 평가 하였다. 각각의 기둥 시험체에 대해 하중과 변위의 관계를 측정하였으며, 이를 바탕으로 연성도, 소산에너지, 등가 감쇠비, 손상 지수가 계산되었다. 실험 결과 ICH RC-CT 기둥은 중실 RC 기둥에 비해 작은 에너지 소산능력을 보여주었으나, 에너지 연성도와 등가 점성 감쇠비 측면에서는 거의 대등한 성능을 보여주었다.

Seismic performance of steel plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.1-18
    • /
    • 2019
  • In the present study, the behavior of steel plate shear walls (SPSW) with variable column flexural stiffness is experimentally and numerically investigated. Altogether six one-bay one-story specimens, three moment resisting frames (MRFs) and three SPSWs, were designed, fabricated and tested. Column flexural stiffness of the first specimen pair (one MRF and one SPSW) corresponded to the value required by the design codes, while for the second and third pair it was reduced by 18% and 36%, respectively. The quasi-static cyclic test result indicate that SPSW with reduced column flexural stiffness have satisfactory performance up to 4% story drift ratio, allow development of the tension field over the entire infill panel, and cause negligible column "pull-in" deformation which indicates that prescribed minimal column flexural stiffness value, according to AISC 341-10, might be conservative. In addition, finite element (FE) pushover simulations using shell elements were developed. Such FE models can predict SPSW cyclic behavior reasonably well and can be used to conduct numerical parametric analyses. It should be mentioned that these FE models were not able to reproduce column "pull-in" deformation indicating the need for further development of FE simulations with cyclic load introduction which will be part of another paper.

Experimental and numerical investigation on exposed RCFST column-base Joint

  • Ben, Mou;Xingchen, Yan;Qiyun, Qiao;Wanqiu, Zhou
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.749-766
    • /
    • 2022
  • This paper investigates the seismic performance of exposed RCFST column-base joints, in which the high-strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens with different axial force ratios (n = 0, 0.25, and 0.5) were tested under cyclic loadings. Finite element analysis (FEA) models were validated in the basic indexes and failure mode. The hysteresis behavior of the exposed RCFST column-base joints was studied by the parametrical analysis including six parameters: width of column (D), width-thickness ratio (D/t), axial force ratio (n), shear-span ratio (L/D), steel tube strength (fy) and concrete strength (fc). The bending moment of the exposed RCFST column-base joint increased with D, fy and fc. But the D/t and L/D play a little effect on the bending capacity of the new column-base joint. Finally, the calculation formula is proposed to assess the bending moment capacities, and the accuracy and stability of the formula are verified.

스티프너로 보강한 콘크리트 충전 원형 강관기둥의 부착응력에 관한 실험적 연구 (An Experimental Study on a Bond Stress in Concrete Filled Circular Steel Tubular Column Strengthened by the Stiffener)

  • 박성무;김성수;김원호;이형석
    • 한국공간구조학회논문집
    • /
    • 제2권2호
    • /
    • pp.51-58
    • /
    • 2002
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

중심 축 하중을 받는 충전각형강관 합성기둥의 부착응력에 관한연구 (Experimental Study on Bond Stress of Concrete Filled Rectangular Steel Tubular Composite Column Subjected to Axial Load)

  • 이형석;박성무
    • 한국공간구조학회논문집
    • /
    • 제3권3호
    • /
    • pp.105-110
    • /
    • 2003
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled Rectangular steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

Fire performance curves for unprotected HSS steel columns

  • Shahria Alam, M.;Muntasir Billah, A.H.M.;Quayyum, Shahriar;Ashraf, Mahmud;Rafi, A.N.M.;Rteil, Ahmad
    • Steel and Composite Structures
    • /
    • 제15권6호
    • /
    • pp.705-724
    • /
    • 2013
  • The behaviour of steel column at elevated temperature is significantly different than that at ambient temperature due to its changes in the mechanical properties with temperature. Reported literature suggests that steel column may become vulnerable when exposed to fire condition, since its strength and capacity decrease rapidly with temperature. The present study aims at investigating the lateral load resistance of non-insulated steel columns under fire exposure through finite element analysis. The studied parameters include moment-rotation behaviour, lateral load-deflection behaviour, stiffness and ductility of columns at different axial load levels. It was observed that when the temperature of the column was increased, there was a significant reduction in the lateral load and moment capacity of the non-insulated steel columns. Moreover, it was noted that the stiffness and ductility of steel columns decreased sharply with the increase in temperature, especially for temperatures above $400^{\circ}C$. In addition, the lateral load capacity and the moment capacity of columns were plotted against fire exposure time, which revealed that in fire conditions, the non-insulated steel columns experience substantial reduction in lateral load resistance within 15 minutes of fire exposure.

Nonlinear behavior of connections in RCS frames with bracing and steel plate shear wall

  • Ghods, Saeedeh;Kheyroddin, Ali;Nazeryan, Meissam;Mirtaheri, Seyed Masoud;Gholhaki, Majid
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.915-935
    • /
    • 2016
  • Steel systems composed of Reinforced Concrete column to Steel beam connection (RCS) have been raised as a structural system in the past few years. The optimized combination of steel-concrete structural elements has the advantages of both systems. Through beam and through column connections are two main categories in RCS systems. This study includes finite-element analyses of mentioned connection to investigate the seismic performance of RCS connections. The finite element model using ABAQUS software has been verified with experimental results of a through beam type connection tested in Taiwan in 2005. According to verified finite element model a parametric study has been carried out on five RCS frames with different types of lateral restraint system. The main objective of this study is to investigate the forming of plastic hinges, distribution of stresses, ductility and stiffness of these models. The results of current research showed good performance of composite systems including concrete column-steel beam in combination with steel shear wall and bracing system, are very desirable. The results show that the linear stiffness of models with X bracing and steel shear wall increase remarkably and their ultimate strength increase about three times rather than other RCS frames.