• 제목/요약/키워드: steel buildings

검색결과 920건 처리시간 0.021초

On the steel cost of circular flat-bottomed silos designed using the Eurocodes

  • Gonzalez-Montellano, Carlos;Ramirez, Alvaro;Gallego, Eutiquio;Ayuga, Francisco
    • Structural Engineering and Mechanics
    • /
    • 제33권5호
    • /
    • pp.561-572
    • /
    • 2009
  • Nowadays, Eurocodes have become the reference standards for silo design within the European Union. They include new procedures for load assessment and structural verifications aiming to design safer silos. However, many silo manufacturers are still reluctant to use them (or at least all their prescriptions) because of the loss of competitiveness they are experiencing in comparison with former standards. This paper shows how steel cost of flat-bottomed circular silos varies when different silo geometries and stored materials are considered. The influence of critical structural verifications on steel costs, such as buckling of the silo wall, were also analyzed and some conclusions and practical recommendations for silo designers were proposed.

An evaluation of the seismic response of symmetric steel space buildings

  • Yon, Burak
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.399-412
    • /
    • 2016
  • This paper evaluates the seismic response of three dimensional steel space buildings using the spread plastic hinge approach. A numerical study was carried out in which a sample steel space building was selected for pushover analysis and incremental nonlinear dynamic time history analysis. For the nonlinear analysis, three earthquake acceleration records were selected to ensure compatibility with the design spectrum defined in the Turkish Earthquake Code. The interstorey drift, capacity curve, maximum responses and dynamic pushover curves of the building were obtained. The analysis results were compared and good correlation was obtained between the idealized dynamic analyses envelopes with and static pushover curves for the selected building. As a result to more accurately account response of steel buildings, dynamic pushover envelopes can be obtained and compared with static pushover curve of the building.

Effect of Wave Load on the Member Force of Steel Structure of Floating Buildings

  • Lee, Young-Wook;Park, Tae-Jun
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1431-1439
    • /
    • 2018
  • For floating buildings may fl oat on the water for a long time, they are constantly affected by various environmental loads such as wind and wave loads. In this study to find the wave effect on the floating building, five models are designed using steel moment resisting frame. It is assumed that the lower part of the floating building is a reinforced concrete pontoon, while the upper part is a three-story steel frame. To analyze floating buildings affected by wind and wave loads, hydro-dynamic and substructure analysis are performed. As input loads, this study set limits that the mean wind velocity is 35 m/s and the significant wave height is 0.5 m for the residential building. From the hydrodynamic analysis, the time-history acceleration of building is obtained and transformed into a base ground input for a substructure analysis of the superstructure of the building. Finally the mean of the maximum from 30 dynamic analysis of the floating buildings are used to be compared with the results of the same model on the ground. It was shown that the dynamic results with wind and wave loads are not always lesser than the static results which are calculated with static equivalent wind load for a building that is located on the ground.

Seismic induced damageability evaluation of steel buildings: a Fuzzy-TOPSIS method

  • Shahriar, Anjuman;Modirzadeh, Mehdi;Sadiq, Rehan;Tesfamariam, Solomon
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.695-717
    • /
    • 2012
  • Seismic resiliency of new buildings has improved over the years due to better seismic codes and design practices. However, there is still large number of vulnerable and seismically deficient buildings. It is not economically feasible to retrofit and upgrade all vulnerable buildings, thus there is a need for rapid screening tool. Many factors contribute to the damageability of buildings; this makes seismic evaluation a complex multi-criteria decision making problem. Many of these factors are noncommensurable and involve subjectivity in evaluation that highlights the use of fuzzy-based method. In this paper, a risk-based framework earlier proposed by Tesfamariam and Saatcioglu (2008a) is extended using Fuzzy-TOPSIS method and applied to develop an evaluation and ranking scheme for steel buildings. The ranking is based on damageability that can help decision makers interpret the results and take appropriate decision actions. Finally, the application of conceptual model is demonstrated through a case study of 1994 Northridge earthquake data on seismic damage of steel buildings.

Blast fragility of base-isolated steel moment-resisting buildings

  • Dadkhah, Hamed;Mohebbi, Mohtasham
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.461-475
    • /
    • 2021
  • Strategic structures are a potential target of the growing terrorist attacks, so their performance under explosion hazard has been paid attention by researchers in the last years. In this regard, the aim of this study is to evaluate the blast-resistance performance of lead-rubber bearing (LRB) base isolation system based on a probabilistic framework while uncertainties related to the charge weight and standoff distance have been taken into account. A sensitivity analysis is first performed to show the effect of explosion uncertainty on the response of base-isolated buildings. The blast fragility curve is then developed for three base-isolated steel moment-resisting buildings with different heights of 4, 8 and 12 stories. The results of sensitivity analysis show that although LRB has the capability of reducing the peak response of buildings under explosion hazard, this control system may lead to increase in the peak response of buildings under some explosion scenarios. This shows the high importance of probabilistic-based assessment of isolated structures under explosion hazard. The blast fragility analysis shows effective performance of LRB in mitigating the probability of failure of buildings. Therefore, LRB can be introduced as effective control system for the protection of buildings from explosion hazard regarding uncertainty effect.

기둥 파괴모드에 따른 학교 건물 철골 가새 보강의 효율성 (The Efficiency of Steel Brace Strengthening of School Buildings according to the Failure Mode of Columns)

  • 이희섭;김태완
    • 한국지진공학회논문집
    • /
    • 제27권2호
    • /
    • pp.101-109
    • /
    • 2023
  • Steel brace strengthening is the most popular seismic rehabilitation method for school buildings. This is because the design can be conducted by using relatively easy nonlinear pushover analysis and standard modeling in codes. An issue with steel brace strengthening is that the reinforced building should behave elastically to satisfy performance objectives. For this, the size of steel braces should be highly increased, which results in excessive strengthening cost by force concentration on existing members and foundations due to the considerable stiffness and strength of the steel braces. The main reason may be the brittle failure mode of columns, so this study investigated the relationship between the efficiency of steel brace strengthening and column failure modes. The result showed that the efficiency is highly dependent on the shear capacity ratio of columns and structural analysis methods. School buildings reinforced by steel braces do not need to behave elastically when the shear capacity ratio is low, and pushover analysis is used, which means reducing steel material is possible.

일반 모멘트 저항 철골조의 지진 응답 해석 (Earthquake Response Analysis of Ordinary Moment Resisting Steel Frames)

  • 윤명호
    • 한국디지털건축인테리어학회논문집
    • /
    • 제4권1호
    • /
    • pp.36-45
    • /
    • 2004
  • Allowable stress design method have been most widely used in steel structure in Korea. Recently, not only high-rise buildings but also medium or low-rise buildings were designed as steel structure. Most of low-rise steel buildings are designed as ordinary moment resisting frames(MRF). But MRFs don't have any lateral force resisting devices such as bracing in braced frames. This study focuses mainly on nonlinear seismic response analyses of small scale steel frames which will be used later as specimens for the evaluation of MRF's seismic performances. The main parameters of analyses are arrangement of column axis, $P-{\Delta}$ effect, acceleration factor etc. The object of this paper is to estimate the seismic performances of MRFs, which are mostly designed in Korea, through the results of response analyses.

  • PDF

The Emergence of the Diagrid - It's All About the Node

  • Boake, Terri Meyer
    • 국제초고층학회논문집
    • /
    • 제5권4호
    • /
    • pp.293-304
    • /
    • 2016
  • The diagrid structural system for constructing tall buildings is a recent invention. Debuting in 2004 with the construction of the Swiss Re Tower in London, this aesthetically driven structural system has centered the perfecting of its technology on the development of the nodes that form its innovative deviation from standard steel tall framing methods. The paper examines variations in node design, understanding the linked dependence the modularity and the choice to expose the steel in the building, as well as on advances in digital modelling that allow an increasingly seamless line of communication from the engineering design through to the actual fabrication of the nodes. This advanced design and fabrication technology will be seen to have resulted in the expanded use of the technical term "node" to inform the design and construction of a range of other applications in the structuring of tall buildings, including the use of steel castings.

Seismic response of 3D steel buildings with hybrid connections: PRC and FRC

  • Reyes-Salazar, Alfredo;Cervantes-Lugo, Jesus Alberto;Barraza, Arturo Lopez;Bojorquez, Eden;Bojorquez, Juan
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.113-139
    • /
    • 2016
  • The nonlinear seismic responses of steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are estimated, modeling the interior connections first as perfectly pinned (PPC), and then as partially restrained (PRC). Two 3D steel building models, twenty strong motions and three levels of the PRC rigidity, which are represented by the Richard Model and the Beam Line Theory, are considered. The RUAUMOKO Computer Program is used for the required time history nonlinear dynamic analysis. The responses can be significantly reduced when interior connections are considered as PRC, confirming what observed in experimental investigations. The reduction significantly varies with the strong motion, story, model, structural deformation, response parameter, and location of the structural element. The reduction is larger for global than for local response parameters; average reductions larger than 30% are observed for shears and displacements while they are about 20% for bending moments. The reduction is much larger for medium- than for low-rise buildings indicating a considerable influence of the structural complexity. It can be concluded that, the effect of the dissipated energy at PRC should not be neglected. Even for connections with relative small stiffness, which are usually idealized as PPC, the reduction can be significant. Thus, PRC can be used at IGF of steel buildings with PMRF to get more economical construction, to reduce the seismic response and to make steel building more seismic load tolerant. Much more research is needed to consider other aspects of the problem to reach more general conclusions.

기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석 (Nonlinear Seismic Analysis of Steel Buildings Considering the Stiffnesses of the Foundation-Soil System)

  • 오영희;김용석
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.173-180
    • /
    • 2006
  • 구조물의 지진응답은 기초지반조건의 영향을 받는다. 이 연구에서는 고정지반과 연약지반을 고려한 3, 5, 7층 철골 건축구조물의 밑면전단력을 산정하기 위해 선형 시간이력지진해석과 비선형 Pushover 정적지진해석을 수행하였다. 등가정적강성식으로 구한 기초지반강성은 SAP2000의 Link 요소 중 Damper 요소를 사용하여 입력하였다. 범용구조해석 프로그램 SAP2000에 의한 시간이력으로 구한 철골건축구조물의 밑면전단력을 국내내진설계기준, UBC-97 설계응답스펙트럼, Pushover 정적 비선형해석으로 구한 밑면전단력과 비교하였다. 중력하중과 풍하중으로 설계된 철골 건축구조물은 0.11g의 중진에 대해 탄성응답을 보였고, 탄성 연약지반에서 구조물-지반의 상호작용과 지반 증폭에 의해 구조물의 변위와 밑면전단력이 증가되었다. 따라서, 중약진 지역에서의 건축구조물은 연약지반의 특성을 고려하여 탄성지진해석을 수행하는 것이 더 합리적이다.