• Title/Summary/Keyword: steel building

Search Result 1,746, Processing Time 0.032 seconds

Moment-curvature hysteresis model of angle steel frame confined concrete columns

  • Rong, Chong;Tian, Wenkai;Shi, Qingxuan;Wang, Bin;Shah, Abid Ali
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • The angle steel frame confined concrete columns (ASFCs) are an emerging form of hybrid columns, which comprise an inner angle steel frame and a concrete column. The inner angle steel frame can provide axial bearing capacity and well confining effect for composite columns. This paper presents the experimental and theoretical studies on the seismic behaviour of ASFCs. The experimental study of the 6 test specimens is presented, based on the previous study of the authors. The theoretical study includes two parts. One part establishes the section analysis model, and it uses to analyze section axial force-moment-curvature. Another part establishes the section moment-curvature hysteresis model. The test and analysis results show that the axial compression ratio and the assembling of steel slabs influence the local buckling of the angle steel. The three factors (axial compression ratio, content of angle steel and confining effect) have important effects on the seismic behaviour of ASFCs. And the theoretical model can provide reasonably accurate predictions and apply in section analysis of ASFCs.

SAFETY EVALUATION OF THE SELF-SUPPORTED STEEL JOINT FOR STEEL ERECTION WORK

  • Goune Kang;Changki Kim;Taehoon Kim;Hunhee Cho;Kyung-In Kang
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.229-233
    • /
    • 2011
  • Recently, the scale of buildings has been increasing because of the high-rise trend and complexity of underground spaces. A significant number of steel structures have therefore been adopted for building construction. Since workers need to work in high places to install steel beams, many industrial accidents easily occur during steel-frame work. Furthermore, considering the increasing trend of building steel structures, the safety of the workers during the steel beam erection work is of concern. To improve the safety, a new type of joint, located between the steel column and beam, which can eliminate the need for working at the elevated height during steel beam erection has been developed in Korea. Using the newly developed technology in the construction field, the safety performance needs to be evaluated. This study presented the safety evaluation approach for the newly developed technology from the literature review, and applied the method to a self-supported steel joint. The result showed that applying the self-supported steel joint improved the safety of the steel erection work in terms of working posture, working environment, and risk exposure time.

  • PDF

A Study on Properties of CFT filled with Expansion Concrete (팽창 콘크리트를 충전한 강관충전 콘크리트의 물성에 관한 연구)

  • Park, Chun-Young;Lee, Jin-Sung;Song, Jong-Mok;Kim, Hyo-Youl;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.117-120
    • /
    • 2008
  • The Purpose of this is properties of CFT filled with expansion concrete. CFT(concrete filled steel tube) is the structure that circle shape steel column filled with concrete. 3 kinds of expansive additives and variation of replacement rate. we changed expansive additive from 0%, 10%, 20%, 30% of ratio of addition rate are selected for this experiment. Merits of CFT are concrete internal force rising influenced by steel shape restriction, reinforcing the local buckling, excellent resistance to transformation. Generally, High rise building using CFT utilize the high strength and fluidity concrete for packing the tube inside. As the result a steel tube charged expensive concrete has stiffness 1.5times more than a steel tube not charged concrete. Increase of resisting power about compressive stress by binding expansion of expansive concrete affects strength increase and softness.

  • PDF

State-of-the-art of advanced inelastic analysis of steel and composite structures

  • Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.341-354
    • /
    • 2001
  • This paper provides a state-of-the-art review on advanced analysis models for investigating the load-displacement and ultimate load behaviour of steel and composite frames subjected to static gravity and lateral loads. Various inelastic analysis models for steel and composite members are reviewed. Composite beams under positive and negative moments are analysed using a moment-curvature relationship which captures the effects of concrete cracking and steel yielding along the members length. Beam-to-column connections are modeled using rotational spring. Building core walls are modeled using thin-walled element. Finally, the nonlinear behaviour of a complete multi-storey building frame consisting of a centre core-wall and the perimeter frames for lateral-load resistance is investigated. The performance of the total building system is evaluated in term of its serviceability and ultimate limit states.

Strength Property Evaluation of Amorphous Steel Fiber-Reinforced Concrete and Applicability Review of Test House (비정질 강섬유 보강 콘크리트 강도 특성 평가 및 실증하우스 적용성 검토)

  • Sung, Jong-Hyun;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.38-39
    • /
    • 2015
  • This study reviewed slump and air content as pre-hardening characteristics depending on B/P production of amorphous steel fiber-reinforced concrete and evaluated compressive strength, flexural strength and tensile strength as post-hardening characteristics depending on B/P production of amorphous steel fiber-reinforced concrete.

  • PDF

A Study on Economic Evaluation Method of Steel Erection Work using by Self-supported Steel Joint (자립형 철골 접합부를 이용한 철골설치 방식의 경제성 평가에 관한 연구)

  • Kim, Changki;Kim, Taehoon;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.3-7
    • /
    • 2009
  • Construction projects are being the skyscraper and the large size by limited site condition and developing construction technology. Therefore, Steel structure work is steadily increasing caused by easy to work and structural safety. However, steel-frame work has the large incidence of heavy accident potentially. Recently a research group has recently developed newly designed self-supported steel joint for enhancing safety of steel erection work. Before applying the steel joint in a construction site, economic evaluation should be performed. Thus, we proposed the method for measuring economic efficiency of the new steel joint and verified economic feasibility of the steel joint method through a case study. As a result, Steel erection method using by self-supported steel joint showed economic rather than the one using by H-beams.

  • PDF

Development of a Separable Glued-Laminated Timber (GLT)-Steel Beam for Eco-Friendly Construction and Dismantling of Buildings (건축물의 친환경 시공·해체를 위한 재료 분리형 GLT-Steel 보 개발)

  • Pang, Sung-Jun;Oh, Jung-Kwon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.23-24
    • /
    • 2023
  • In this study, an easily recyclable separable glued-laminated timber (GLT)-steel beam was developed, and a structural design method was presented. The GLT and steel were mechanically composited using self-tapping screws. The GLT-steel beam was designed to fail in the compression of GLT. The bending moment and load-carrying capacity of the GLT-steel beam were predicted based on composite beam theory and compared with experimental test data. As a result, the GLT-steel beam exhibited ductile behavior, and compression failure of GLT was observed. The screw connection showed no damage while the steel plate was extended. The load-carrying capacity of GLT after failure was similar to the load resistance predicted by the compressive strength of GLT and the tensile strength of steel. This indicates that the ductile behavior of the GLT-steel beam can be safely designed by the tensile strength (yield) of steel.

  • PDF

Experimental study on shear capacity of circular concrete filled steel tubes

  • Xiao, Congzhen;Cai, Shaohuai;Chen, Tao;Xu, Chunli
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.437-449
    • /
    • 2012
  • Concrete filled steel tube (CFST) structures have recently seen wide use in China, but studies of the shear problem of CFST are inadequate. This paper presents an experimental study on the shear capacity of circular concrete filled steel tube (CCFT) specimens with and without axial compression force. Shear capacity, ductility, and damage modes of CCFTs were investigated and compared. Test results revealed the following: 1) CCFTs with a small shear span ratio may fail in shear in a ductile manner; 2) Several factors including section size, material properties, shear span ratio, axial compression ratio, and confinement index affect the shear capacity of CCFTs. Based on test results and analysis, this paper proposes a design formula for the shear capacity of CCFTs.

Comparative Study for Fire Protective Materials of Column According to Variance of Lengths (길이변화에 따른 기둥부재의 내화피복 비교연구)

  • Kwon, In-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.118-119
    • /
    • 2014
  • A fire in a steel framed building can decrease a structural stability and cause deformation. And the fire continues the building can be demolished. Therefore, every country requires fire resistance performance of structural elements. In case of column, fire protective thickness derived from a specific fire test using an horizontal furnace is allowed to apply any kinds of sections and lengths of column. However, the lengths and sections of the column in steel framed buildings are various. In this paper, to know the differences of fire performance of steel column according to variance of lengths, a maximum allowable stress, steel surface temperature history, deflection are calculated and the thickness of fire protective material for longer column(4700 mm) need to enforce about 10% more than shorter column (3500 mm).

  • PDF

Testing and finite element modeling of stressed skin diaphragms

  • Liu, Yang;Zhang, Qilin;Qian, Weijun
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 2007
  • The cold formed light-gauge profiled steel sheeting can offer considerable shear resistance acting in the steel building frame. This paper conducted the full-scale test on the shear behavior of stressed skin diaphragm using profiled sheeting connected by the self-tapping screws. A three-dimensional finite element model that simulates the stressed skin diaphragm was developed. The sheet was modeled using thin element model while the supporting members were simulated using beam elements. Fasteners were represented in the numerical model as equivalent springs. A joint test program was conducted to characterize the properties of these springs and results were reported in this study. Finite element model of the full-scale test was analyzed by use of the ANSYS package, considering nonlinearity caused by the large deflection and slip of fasteners. The experimental data was compared with the results acquired by the EUR formulas and finite element analysis.