• 제목/요약/키워드: steel beam-to-column connections

Search Result 391, Processing Time 0.024 seconds

Deformation Capacity of Steel Moment Connections with RHS Column (각형강관 기둥을 가진 철골모멘트 접합부의 변형능력)

  • Kim, Young-Ju;Oh, Sang-Hoon;Ryu, Hong-Sik
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.249-258
    • /
    • 2006
  • In this paper, deformation capacity of steel moment connections with RHS column was investigated. Initially, non-linear finite element analysis of five bate steel beam models was conducted. The models were designed to have different detail at their beam-to-column connection, so that the flexural moment capacity was different respectively. Analysis results showed 4hat the moment transfer efficiency of the analytical model with RHS-column was poor when comparing to model with WF(Wide flnage)-column due to out-of-plane deformation of the RHS-column flange. The presence of scallop and thin plate of RHS column was also a reason of the decrease of moment transfer efficiency, which would result in a potential fracture of tile steel beam-to-column connections. Further test on beam-to-column connections with RHS column revealed that the moment transfer efficiency of a beam web decreased due to the out-of-plane deformation of column flange, which led to premature failure of the connection.

  • PDF

Cyclic testing of steel column-tree moment connections with various beam splice lengths

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keunyeong;Kim, Kang-Seok
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.221-231
    • /
    • 2014
  • The purpose of this study was to evaluate the cyclic behavior of steel column-tree moment connections used in steel moment resisting frames. These connections are composed of shop-welded stub beam-to-column connection and field bolted beam-to-beam splice. In this study, the effects of beam splice length on the seismic performance of column-tree connections were experimentally investigated. The change of the beam splice location alters the bending moment and shear force at the splice, and this may affect the seismic performance of column-tree connections. Three full-scale test specimens of column-tree connections with the splice lengths of 900 mm, 1,100 mm, and 1,300 mm were fabricated and tested. The splice lengths were roughly 1/6, 1/7, 1/8 of the beam span length of 7,500 mm, respectively. The test results showed that all the specimens successfully developed ductile behavior without brittle fracture until 5% radians story drift angle. The maximum moment resisting capacity of the specimens showed little differences. The specimen with the splice length of 1,300 mm showed better bolt slip resistance than the other specimens due to the smallest bending moment at the beam splice.

Study and design of assembled CFDST column-beam connections considering column wall failure

  • Guo, Lei;Wang, Jingfeng;Yang, T.Y.;Wang, Wanqian;Zhan, Binggen
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.201-213
    • /
    • 2021
  • Currently, there is a lack of research in the design approach to avoid column wall failure in the concrete filled double skin steel tubular (CFDST) column-beam connections. In this paper, a finite element model has been developed and verified by available experimental data to analyze the failure mechanism of CFDST column-beam connections. Various finite element models with different column hollow ratios (χ) were established. The simulation result revealed that with increasing χ the failure mode gradually changed from yielding of end plate, to local failure of the column wall. Detailed parametric analyses were performed to study the failure mechanism of column wall for the CFDST column-beam connection, in which the strength of sandwiched concrete and steel tube and thickness of steel tube were incorporated. An analytical model was proposed to predict the moment resistance of the assembled connection considering the failure of column wall. The simulation results indicate that the proposed analytical model can provided a conservative prediction of the moment resistance. Finally, an upper bound value of χ was recommend to avoid column wall failure for CFDST column-beam connections.

Investigation of the effect of bolt diameter and end plate thickness change on bolt column-beam connection

  • Samet Oguzhan Dogan;Senol Gursoy;Ramazan Ozmen
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.155-170
    • /
    • 2024
  • Several types of column-beam connections are used in the design of steel structures. This situation causes different cross-section effects and, therefore, different displacements and deformations. In other words, connection elements such as welds, bolts, continuity plates, end plates, and stiffness plates used in steel column-beam connections directly affect the section effects. This matter reveals the necessity of knowing the steel column-beam connection behaviours. In this article, behaviours of bolted column-beam connection with end plate widely used in steel structures are investigated comparatively the effects of the stiffness plates added to the beam body, the change in the end plate thickness and bolt diameter. The results obtained reveal that the moment and force carrying capacity of the said connection increases with the increase in the end plate thickness and bolt diameter. In contrast, it causes the other elements to deform and lose their capacity. This matter shows that optimum dimensions are very important in steel column-beam connections. In addition, it has been seen that adding a stiffness plate to the beam body part positively contributes to the connection's moment-carrying capacity.

Behavior of Beam-to-Concrete Filled Steel Tube Column Rigid Connections (콘크리트충전 각형강관기둥-보 접합부의 거동에 관한 연구)

  • Kim, Cheol Hwan;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.741-748
    • /
    • 1998
  • Experimental studies were carried out with test parameters: diaphragm yield type and beam yield type, the opening hole size of inner steel diaphragm, and the existence of slab in order to understand the behavior of beam-to-concrete filled steel tube column rigid connections under cyclic loading condition. Test results show that the connections have good rotational capacity when the beam yields first and the joints should be designed such that the beam yields prior to the inner diaphragms.

  • PDF

Experimental seismic behavior of RC special-shaped column to steel beam connections with steel jacket

  • Hao, Jiashu;Ren, Qingying;Li, Xingqian;Zhang, Xizhi;Ding, Yongjun;Zhang, Shaohua
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.101-118
    • /
    • 2022
  • The seismic performance of the reinforced concrete (RC) special-shaped column to steel beam connections with steel jacket used in the RC column to steel beam fabricated frame structures was investigated in this study. The three full-scale specimens were subjected to cyclic loading. The failure mode, ultimate bearing capacity, shear strength capacity, stiffness degradation, energy dissipation capacity, and strain distribution of the specimens were studied by varying the steel jacket thickness parameters. Test results indicate that the RC special-shaped column to steel beam connection with steel jacket is reliable and has excellent seismic performance. The hysteresis curve is full and has excellent energy dissipation capacity. The thickness of the steel jacket is an important parameter affecting the seismic performance of the proposed connections, and the shear strength capacity, ductility, and initial stiffness of the specimens improve with the increase in the thickness of the steel jacket. The calculation formula for the shear strength capacity of RC special-shaped column to steel beam connections with steel jacket is proposed on the basis of the experimental results and numerical simulation analysis. The theoretical values of the formula are in good agreement with the experimental values.

Seismic behavior of post-tensioned precast reinforced concrete beam-to-column connections

  • Cheng, Chin-Tung
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.525-544
    • /
    • 2008
  • In this research, the self-centering effect in precast and prestressed reinforced concrete structures was investigated experimentally. The reinforced concrete beams and columns were precast and connected by post-tensioning tendons passing through the center of the beams as well as the panel zone of the connections. Three beam-to-interior-column connections were constructed to investigate parameters such as beam to column interfaces (steel on steel or plastic on plastic), energy dissipating devices (unbonded buckling restrained steel bars or steel angles) and the spacing of hoops in the panel zone. In addition to the self-centering effect, the shear strength in the panel zone of interior column connections was experimentally and theoretically evaluated, since the panel zone designed by current code provisions may not be conservative enough to resist the panel shear increased by the post-tensioning force.

A parametric investigation on the hysteretic behaviour of CFT column to steel beam connections

  • Esfandyary, R.;Razzaghi, M.S.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.205-228
    • /
    • 2015
  • The results of a numerical investigation pertaining to the hysteretic behaviour of concrete filled steel tubular (CFT) column to I-beam connections are discussed in detail. Following the verification of the numerical results against the available experimental tests, the nonlinear finite element (FE) analysis was implemented to evaluate the effects of different parameters including the column axial load, beam lateral support, shape and arrangement of stiffeners, stiffness of T-stiffeners, and the number of shear stiffeners. Pursuing this objective, an external CFT column to beam connection, tested previously, was selected as the case-study. The lateral forces on the structure were simulated, albeit approximately, using an incremental cyclic loading reversal applied at the beam tip. The results were compared in terms of hysteretic load-displacement curves, stress distributions in connection, strength, rotation, and energy dissipation capacity. It was shown that external T-stiffeners combined with internal shear stiffeners play an important role in the hysteretic performance of CFT columns to I-beam connections.

Behavior of Concrete-Filled Square Steel Tubular Column-H Beam Connections with Reinforced bars (철근으로 보강한 콘크리트충전 각형강관 기둥-H형강보 접합부의 거동)

  • Yoo, Yeong Chan;Shin, Kyung Jae;Oh, Young Suk;Lee, Seung Joon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.377-390
    • /
    • 1997
  • The objective of this study is to investigate the structural behavior of concrete-filled steel tubular column to H-beam connections with reinforced bar. As a preliminary test, simple tensile test on the column to H-beam connections stiffened were conducted. The parameters of tensile test are the diameters of each rebars. The simple tensile test were conducted to 5 kinds of specimens. Estimating the load. displacement and strain for specimens, the result of tensile test were compared with the results of main test. On the basis of simple tensile test, tests are conducted to montonic and cyclic loading column to H-beam connections with the same diameters of rebars. Specimens of 5 are made for monotonic and cyclic loading test. In analysis, estimating the yielding strength and maximum strength of specimens on the basis of yield line theory, strength formula of beam-to column connections with concrete-filled steel tubular column was suggested.

  • PDF

Experimental study on seismic performance of partial penetration welded steel beam-column connections with different fillet radii

  • Ge, Hanbin;Jia, Liang-Jiu;Kang, Lan;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.851-865
    • /
    • 2014
  • Full penetration welded steel moment-resisting frame (SMRF) structures with welded box sections are widely employed in steel bridges, where a large number of steel bridges have been in operation for over fifty years in Japan. Welding defects such as incomplete penetration at the beam-column connections of these existing SMRF steel bridge piers were observed during inspection. Previous experiments conducted by the authors' team indicate that gusset stiffeners (termed fillets in this study) at the beam-web-to-column-web joint of the beam-column connections may play an important role on the seismic performance of the connections. This paper aims to experimentally study the effect of the fillet radius on seismic performance of the connections with large welding defects. Four specimens with different sizes of fillet radii were loaded under quasi-static incremental cyclic loading, where different load-displacement relations and cracking behaviors were observed. The experimental results show that, as the size of the fillet radius increases, the seismic performance of the connections can be greatly improved.