• Title/Summary/Keyword: steel bar size

Search Result 78, Processing Time 0.024 seconds

Confining Effect of Mortar-filled Steel Pipe Splice

  • Kim, Hyong-Kee
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.27-35
    • /
    • 2008
  • Because of several advantages of mortar-filled sleeve splice in reinforced concrete buildings, this method is being applied increasingly at construction sites and various methods of the splice have been developed in Korea and other countries. In order to apply this system in the field, studies on mortar-filled sleeve splice have been mainly experimental research focused on overall structural performance. However, for understanding the structural characteristics of this splice more accurately, we need to study the confining effect of sleeve, which is known to affect bond strength between filling mortar and reinforcing bar, the most important structural elements of the bar splice. Thus, in order to examine the confinement effect of mortar-filled steel pipe sleeve splice, the present study prepared actual-size specimens of steel pipe sleeve splice, and conducted a loading. Using the test results, we analyzed how the confining effect of steel pipe sleeve affects the bond strength of this splice and obtained data for developing more reasonable methods of designing the splice of reinforcement.

Measurements and Data Interpretation for the Detection of Steel Bars and Delamination inside Concrete (콘크리트내의 철근 및 공동탐사를 위한 측정과 분석)

  • Rhim, Hong-Chul;Park, Ki-Joon;Lee, Soong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.305-313
    • /
    • 2000
  • To determine detection capabilities of locating steel bars and delamination inside concrete, commercially available nondestructive testing (NDT) equipments have been tested. The equipments include two radar systems and two electromagnetic method systems. The inclusions are a 19 mm diameter steel bar and 50 mm thick delamination embedded at different cover depths from the surface of concrete specimens. For the steel bar, attempts were made to determine the size of the bars by changing the diameter of the bars. A sample result of measuring horizontal spacing between doubly reinforced bars is presented in this paper. Experimental results on various measurement cases are discussed. Application of numerical modeling technique for the simulation of radar measurements and improved output display of radar measurements are also presented.

  • PDF

Optimization of the braced dome structures by using Jaya algorithm with frequency constraints

  • Grzywinski, Maksym;Dede, Tayfun;Ozdemir, Yaprak Itir
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • The aim of this paper is to present new and an efficient optimization algorithm called Jaya for the optimum mass of braced dome structures with natural frequency constraints. Design variables of the bar cross-section area and coordinates of the structure nodes were used for size and shape optimization, respectively. The effectiveness of Jaya algorithm is demonstrated through three benchmark braced domes (52-bar, 120-bar, and 600-bar). The algorithm applied is an effective tool for finding the optimum design of structures with frequency constraints. The Jaya algorithm has been programmed in MATLAB to optimize braced dome.

Bond Strength between Steel and Concrete with Different Diameters in the Same Corrosion Rate (직경별 부식 철근과 콘크리트 간의 부착강도에 관한 연구)

  • Du, Rujun;Jang, Indong;Lee, HyeRin;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.190-191
    • /
    • 2020
  • The bonding of steel bar to concrete is closely related to the roughness and corrosion degree of steel bar surface. The accelerated corrosion of concrete specimens with different reinforcement diameters was carried out in this test. Through the pullout test of the corroded concrete specimens, the relationship between the bond stress and the displacement of the corroded concrete specimens under the corresponding corrosion degree was obtained. The bond stress of reinforced concrete with different size and corrosion degree are compared and analyzed to find out the influence of corrosion on the bonding property of reinforced concrete.

  • PDF

A Proposal of Minimum Steel Ratio Considering Size Effect for Flexural Reinforced Concrete Member (크기효과가 고려된 철근콘크리트 휨 부재의 최소철근비 제안)

  • Yoo, Sung-Won;Her, Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.128-136
    • /
    • 2010
  • In according with concrete structural design standard, it is common designing flexure reinforcement concrete to induce tension failure. So reinforcing ratio is limited to inducing tension failure. And maximum reinforcing ratio is regulated to protecting concrete compression strength caused by over reinforced building. Minimum reinforcing ratio is also limited in designing standard to protecting brittle failure as extremely using less reinforcing bar. But in minimum reinforcing ratio it is extremely conservative or it is sometimes impossible to induce stable tension-failure because they are depending on yield failure and experienced method and concrete designing standard strength. Therefore the purpose of the present paper is to evaluate the flexural behavior of minimum steel ratio of reinforced concrete of beams and to propose the guide-line of equation of minimum steel ratio by performing static flexural test of 16 beams according to size effect, number of steel, yielding stress of steel, and concrete compressive strength which are presumed effective variables. From experimental results, the equation of minimum steel ratio was newly proposed considered size effect.

An Approximate Model for Predicting Roll Force in Rod Rolling

  • Lee, Youngseog;Kim, Hong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.501-511
    • /
    • 2002
  • This paper presents a study of the effect of rolling temperature, roll gap (pass height), initial specimen size and steel grades of specimens on the roll force in round-oval-round pass sequence by applying approximate method and verifications through single stand pilot rod rolling tests. The results show that the predicted roll forces are in good agreement with the experimentally measured ones. The approximate model is independent of the change of roll gap, specimen size and temperature. Thus, the generality of the prediction methodology employed in the approximate model is proven. This study also demonstrates that Shida's constitutive equation employed in the approximate model needs to be corrected somehow to be applicable for the medium and high carbon steels in a lower temperature interval (700∼900$\^{C}$).

Development of non-destructive method of detecting steel bars corrosion in bridge decks

  • Sadeghi, Javad;Rezvani, Farshad Hashemi
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.615-627
    • /
    • 2013
  • One of the most common defects in reinforced concrete bridge decks is corrosion of steel reinforcing bars. This invisible defect reduces the deck stiffness and affects the bridge's serviceability. Regular monitoring of the bridge is required to detect and control this type of damage and in turn, minimize repair costs. Because the corrosion is hidden within the deck, this type of damage cannot be easily detected by visual inspection and therefore, an alternative damage detection technique is required. This research develops a non-destructive method for detecting reinforcing bar corrosion. Experimental modal analysis, as a non-destructive testing technique, and finite element (FE) model updating are used in this method. The location and size of corrosion in the reinforcing bars is predicted by creating a finite element model of bridge deck and updating the model characteristics to match the experimental results. The practicality and applicability of the proposed method were evaluated by applying the new technique to a two spans bridge for monitoring steel bar corrosion. It was shown that the proposed method can predict the location and size of reinforcing bars corrosion with reasonable accuracy.

Mechanical Characteristics of Hybrid Fiber Reinforced Composite Rebar (하이브리드 섬유강화 복합재료 리바의 기계적 특성)

  • HAW GIL-YOUNG;AHN DONG-GUE;LEE DONG-GI
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.57-63
    • /
    • 2005
  • The objective of this research is to investigate the mechanical characteristics of the hybrid fiber reinforced composite rebar, which is manufactured from a braidtrusion process. Braidtrusion is a direct composite fabrication technique, utilizing in-line brading and the pultrusion process. hz order to obtain the mechanical behavior of the glass fiber, carbon fiber, and kevlar fiber, the tensile tests are carried out. The results of the fibers are compared with that of steel. Hybrid rebar specimens with various diameters, ranging from model size (3 mm) to full-scale size (9.5 mm), and various cross sections, such as solid and hollow shape, have been manufactured from the braidtrusion process. The tensile and bending tests for the case of the hybrid rebar, the conventional GFRP rebar, and the steel bar have been carried out. The results of the experiments show that the hybrid rebar is superior to the conventional GFRP rebar and the steel bar, from the viewpoint of tensile and bending characteristics.

A Study of Residual Stress and Plastic Deformation of a Bar with Gap Size Changes Between Rolls in a Two Cross-Roll Straightener (두롤 교정기의 롤 갭 변화에 따른 봉강의 잔류응력과 소성변형에 관한 연구)

  • Cho, Hyun-Soo;Hahm, Ju-Hee;Lee, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.355-360
    • /
    • 2012
  • Cold drawn(CD) bars feature superb surface roughness, dimensional precision, and straightness. They are used in the manufacture of automotive parts and home electrical appliances. Two cross-roll straighteners have been used to manufacture CD bars for these industries. This study investigated the variation of the gap size between the two cross-rolls. It was found that changes in the gap size have a large influence on the residual stress and plastic deformation. Finite element method(FEM) simulations were performed to study the influence of the gap size on the residual stress in CD bars, and experiments were performed to verify the FEM results. The residual stresses were measured with X-ray diffraction in both the axial and the hoop directions.