• 제목/요약/키워드: steel and steel-concrete composite buildings

검색결과 121건 처리시간 0.027초

Shear strength prediction of concrete-encased steel beams based on compatible truss-arch model

  • Xue, Yicong;Shang, Chongxin;Yang, Yong;Yu, Yunlong;Wang, Zhanjie
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.785-796
    • /
    • 2022
  • Concrete-encased steel (CES) beam, in which structural steel is encased in a reinforced concrete (RC) section, is widely applied in high-rise buildings as transfer beams due to its high load-carrying capacity, great stiffness, and good durability. However, these CES beams are prone to shear failure because of the low shear span-to-depth ratio and the heavy load. Due to the high load-carrying capacity and the brittle failure process of the shear failure, the accurate strength prediction of CES beams significantly influences the assessment of structural safety. In current design codes, design formulas for predicting the shear strength of CES beams are based on the so-called "superposition method". This method indicates that the shear strength of CES beams can be obtained by superposing the shear strengths of the RC part and the steel shape. Nevertheless, in some cases, this method yields errors on the unsafe side because the shear strengths of these two parts cannot be achieved simultaneously. This paper clarifies the conditions at which the superposition method does not hold true, and the shear strength of CES beams is investigated using a compatible truss-arch model. Considering the deformation compatibility between the steel shape and the RC part, the method to obtain the shear strength of CES beams is proposed. Finally, the proposed model is compared with other calculation methods from codes AISC 360 (USA, North America), Eurocode 4 (Europe), YB 9082 (China, Asia), JGJ 138 (China, Asia), and AS/NZS 2327 (Australia/New Zealand, Oceania) using the available test data consisting of 45 CES beams. The results indicate that the proposed model can predict the shear strength of CES beams with sufficient accuracy and safety. Without considering the deformation compatibility, the calculation methods from the codes AISC 360, Eurocode 4, YB 9082, JGJ 138, and AS/NZS 2327 lead to excessively conservative or unsafe predictions.

Developing a modified IDA-based methodology for investigation of influencing factors on seismic collapse risk of steel intermediate moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.367-377
    • /
    • 2020
  • Incremental dynamic analysis (IDA) widely uses for the collapse risk assessment procedures of buildings. In this study, an IDA-based collapse risk assessment methodology is proposed, which employs a novel approach for detecting the near-collapse (NC) limit state. The proposed approach uses the modal pushover analysis results to calculate the maximum inter-story drift ratio of the structure. This value, which is used as the upper-bound limit in the IDA process, depends on the structural characteristics and global seismic responses of the structure. In this paper, steel midrise intermediate moment resisting frames (IMRFs) have selected as case studies, and their collapse risk parameters are evaluated by the suggested methodology. The composite action of a concrete floor slab and steel beams, and the interaction between the infill walls and the frames could change the collapse mechanism of the structure. In this study, the influences of the metal deck floor and autoclaved aerated concrete (AAC) masonry infill walls with uniform distribution are investigated on the seismic collapse risk of the IMRFs using the proposed methodology. The results demonstrate that the suggested modified IDA method can accurately discover the near-collapse limit state. Also, this method leads to much fewer steps and lower calculation costs rather than the current IDA method. Moreover, the results show that the concrete slab and the AAC infill walls can change the collapse parameters of the structure and should be considered in the analytical modeling and the collapse assessment process of the steel mid-rise intermediate moment resisting frames.

Parametric study on bearing capacity of CFST members considering the concrete horizontal casting effect

  • Sun, Wenbo;Luo, Yiqun;Zhou, Weijian;Huang, Wei
    • Steel and Composite Structures
    • /
    • 제13권3호
    • /
    • pp.259-275
    • /
    • 2012
  • Concrete filled steel tubular (CFST) member has been widely used in the construction of high-rise buildings for its high axial bearing capacity. It can also be applied on long-span structures such as spatial structures or bridges not only for its high bearing capacity but also for its construction convenience. Concrete casting effect of CFST member is considered in the study of its bearing capacity in this paper. Firstly, in order to authenticate the applicability of constitutive relationship and yield criterion of steel and concrete based on FEM, two ANSYS models are built to simulate and compared with other's test. Secondly, in order to find the huge difference in bearing capacity due to different construction processes, two full-size CFST models are studied when they are horizontally cast and axially compressed. Finally, the effects of slenderness ratio (L/D) and confining parameter (D/t) of CFST members are studied to reveal the intrinsic links between bearing capacity and slenderness ratio or confining parameter.

Behaviours of steel-fibre-reinforced ULCC slabs subject to concentrated loading

  • Wang, Jun-Yan;Gao, Xiao-Long;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.407-416
    • /
    • 2019
  • Novel steel fibre reinforced ultra-lightweight cement composite (ULCC) with compressive strength of 87.3MPa and density of $1649kg/m^3$ was developed for the flat slabs in civil buildings. This paper investigated structural behaviours of ULCC flat slabs according to a 4-specimen test program under concentrated loading and some reported test results. The investigated governing parameters on the structural behaviours of the ULCC slabs include volume fraction of the steel fibre and the patch loading area. The test results revealed that ULCC flat slabs with and without flexure reinforcement failed in different failure mode, and an increase in volume fraction of the steel fibre and loading area led to an increase in flexural resistance for the ULCC slabs without flexural reinforcement. Based on the experiment results, the analytical models were developed and also validated. The validations showed that the analytical models developed in this paper could predict the ultimate strength of the ULCC flat slabs with and without flexure reinforcement reasonably well.

Experimental studies on the behaviour of headed shear studs for composite beams in fire

  • Lim, Ohk Kun;Choi, Sengkwan;Kang, Sungwook;Kwon, Minjae;Choi, J. Yoon
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.743-752
    • /
    • 2019
  • Steel and concrete composite structures are commonly applied in multi-story buildings as they maximise the material strength through composite action. Despite the popularity of employing a trapezoidal deck slab, limited experimental data are available under elevated temperatures. The behaviour of the headed shear stud embedded in a transverse trapezoidal deck and solid slab was investigated at both ambient and fire conditions. Twelve push-out tests were conducted according to the ISO 834 standard fire utilising a customised electric furnace. A stud shearing failure was observed in the solid slab specimen, whereas the failure mode was changed from a concrete-dominated failure to the stud shearing in the transverse deck specimen with an increase in temperature. Comparisons between the experimental observations and design requirements are presented. The Eurocode design guidance on the transverse deck slab gives a highly conservative estimate for shear resistance. A new design formula was proposed to determine the capacity of the shear connection regardless of the slab type when the stud shearing occurs at high temperatures.

Experimental study on the seismic performance of concrete filled steel tubular laced columns

  • Huang, Zhi;Jiang, Li-Zhong;Chen, Y. Frank;Luo, Yao;Zhou, Wang-Bao
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.719-731
    • /
    • 2018
  • Concrete filled steel tubular (CFST) laced columns have been widely used in high rise buildings in China. Compared to solid-web columns, this type of columns has a larger cross-section with less weight. In this paper, four concrete filled steel tubular laced columns consisting of 4 main steel-concrete tubes were tested under cyclic loading. Hysteresis and failure mechanisms were studied based on the results from the lateral cyclic loading tests. The influence of each design parameter on restoring forces was investigated, including axial compression ratio, slenderness ratio, and the size of lacing tubes. The test results show that all specimens fail in compression-bending-shear and/or compression-bending mode. Overall, the hysteresis curves appear in a full bow shape, indicating that the laced columns have a good seismic performance. The bearing capacity of the columns decreases with the increasing slenderness ratio, while increases with an increasing axial compression ratio. For the columns with a smaller axial compression ratio (< 0.3), their ductility is increased. Furthermore, with the increasing slenderness ratio, the yield displacement increases, the bending failure characteristic is more obvious, and the hysteretic loops become stouter. The results obtained from the numerical analyses were compared with the experimental results. It was found that the numerical analysis results agree well with the experimental results.

Form Follows Function - The Composite Construction and Mixed Structures in Modern Tall Buildings

  • Peng, Liu
    • 국제초고층학회논문집
    • /
    • 제3권3호
    • /
    • pp.191-198
    • /
    • 2014
  • The tall building and super tall building has been a common building type in China, with multiple functions and complex geometry. Composite construction is broadly used in tall building structures and constitutes the mixed structure together with concrete and steel constructions. The mixture of the constructions is purposely designed for specific area based on the analysis results to achieve the best cost-effectiveness. New types of composite construction are conceived of by engineers for columns and walls. Material distribution is more flexible and innovative in the structural level and member level. However the reliability of computer model analysis should be verified carefully. Further researches in the design and build of composite construction are necessary to ensure the success of its application. Composite or Mixture Index is suggested to be used as a performance benchmark.

반복하중을 받는 TEC-BEAM 철골브라켓 접합부 거동평가 (Structural Behaviour of TEC-BEAM Connection with Steel Column Under Cyclic Loading)

  • 주영규;김지영;김명한;정광량;김상대
    • 한국강구조학회 논문집
    • /
    • 제14권1호
    • /
    • pp.51-58
    • /
    • 2002
  • 고층 건물의 층고를 줄이기 위해, 역 T형강, PC 콘크리트 그리고 현장타설 콘크리트 슬래브로 이루어진 새로운 합성보로써 TEC-BEAM이 개발되었다. TEC-BEAM은 이전에 단순보 실험이 수행되었고, 우수한 거동을 보였다. 그러나 현장적용을 위해서는 TEC-BEAM의 상주주근을 정착시키기 위해 철골 브라켓을 이용하는 모멘트저항 접합부 상세가 요구되었다. 본 연구에서는 TEC-BEAM 접합부에 대한 3개의 실험체를 실험하였고 실험변수는 (1)횡철근 간격. (2)브라켓 길이에 대한 철근의 배근폭비이다. 실험체는 Eurocode 4에 의한 Semi-Rigid Full Strengh 접합부로 분류되었다. 실험결과로부터 제안된 시스템은 우수한 성능을 보이며 현장에서 적용될 수 있다.

주열식공법 엄지말뚝을 위한 고강도 신형상 합성파일 (S-Pile)의 휨성능 평가 (Flexural Capacity Evaluation of High-strength New-shape Composite Pile (S-Pile) for the Soldier Pile in the C.I.P Method)

  • 이경구;김대희;주은희;김영기;김봉찬;이지훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.185-186
    • /
    • 2021
  • In Korea, many buildings are built with underground spaces and cast-in-place pile method is mostly applied in the temporary retaining walls for the underground space construction. A H-shaped steel section is generally embedded in the soldier pile in the C.I.P method. In this study, a new and economical section with high strength steel replacing the H-shaped section was proposed and its flexural capacity was evaluated experimentally. The new section is the concrete-filled composite section with pentagonal thin plate and thick flange plate. Test results showed that the proposed section has an excellent flexural strength and ductility.

  • PDF

경계조건의 조절에 따른 합성 데크플레이트 슬래브의 거동특성에 관한 연구 (A Study on the Dynamic Characteristics of Composite Deck Plate According to the Modification of Boundary Conditions)

  • 김우영;정은호;엄철환;김희철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.371-376
    • /
    • 1998
  • As the requirement of high-rise buildings in big cities increases, steel structural system becomes more popular in spite of the relatively higher material cost compared to that of the concrete structural system. Most of the steel structure adopts metal deck floor system because of the easiness in construction. However, the metal deck floor system has a weakness on vibration which became very important factor in office buildings, hotels and residential buildings as the more sensitive machines being used. Therefore, most, of the building codes in many countries restrict the natural frequency of the each floor should be higher than or equal to 15 Hz. Floor vibration of the KEM deck composite floor system which has been , developed recently from the engineers and scientists in Korea was measured. Also, the simplified analytical derivation of natural frequency for each floor was studied according to the measured natural frequency for each different boundary condition of the floor. As the length of the slab gets bigger, the natural frequency of the slab becomes lower even though the structural designer still considers it as a one-way slab.

  • PDF