• 제목/요약/키워드: steel and bridge

검색결과 1,628건 처리시간 0.031초

A statistical framework with stiffness proportional damage sensitive features for structural health monitoring

  • Balsamo, Luciana;Mukhopadhyay, Suparno;Betti, Raimondo
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.699-715
    • /
    • 2015
  • A modal parameter based damage sensitive feature (DSF) is defined to mimic the relative change in any diagonal element of the stiffness matrix of a model of a structure. The damage assessment is performed in a statistical pattern recognition framework using empirical complementary cumulative distribution functions (ECCDFs) of the DSFs extracted from measured operational vibration response data. Methods are discussed to perform probabilistic structural health assessment with respect to the following questions: (a) "Is there a change in the current state of the structure compared to the baseline state?", (b) "Does the change indicate a localized stiffness reduction or increase?", with the latter representing a situation of retrofitting operations, and (c) "What is the severity of the change in a probabilistic sense?". To identify a range of normal structural variations due to environmental and operational conditions, lower and upper bound ECCDFs are used to define the baseline structural state. Such an approach attempts to decouple "non-damage" related variations from damage induced changes, and account for the unknown environmental/operational conditions of the current state. The damage assessment procedure is discussed using numerical simulations of ambient vibration testing of a bridge deck system, as well as shake table experimental data from a 4-story steel frame.

Electrochemical Characteristics of Zn-mesh Cathodic Protection Systems in Concrete in Natural Seawater at Elevated Temperature

  • Kim, Ki-Joon;Jung, Jin-A;Lee, Woo-Cheol;Jang, Tae-Seub
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.269-274
    • /
    • 2007
  • The corrosion of steel in concrete is significant in marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood so far. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100 cm column specimens with eight of 10 cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both $10^{\circ}C$ and $40^{\circ}C$ in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode.

Flexural Behavior of Continuous Composite Bridges with Precast Concrete Decks

  • Chung, Chul-Hun
    • 콘크리트학회논문집
    • /
    • 제15권4호
    • /
    • pp.625-633
    • /
    • 2003
  • For the construction of open-topped steel box girder bridges, prefabricated concrete slab could offer several advantages over cast-in-situ deck including good quality control, fast construction, and elimination of the formwork for concrete slab casting. However, precast decks without reinforcements at transverse joints between precast slabs should be designed to prevent the initiation of cracking at the joints, because the performance of the joint is especially crucial for the integrity of a structural system. Several prestressing methods are available to introduce proper compression at the joints, such as internal tendons, external tendons and support lowering after shear connection. In this paper, experimental results from a continuous composite bridge model with precast decks are presented. Internal tendons and external tendons were used to prevent cracking at the joints. Judging from the tests, precast decks in negative moment regions have the whole contribution to the flexural stiffness of composite section under service loads if appropriate prestressing is introduced. The validity of the calculation of a cracking load fur serviceability was presented by comparing an observed cracking load and the calculated value. Flexural behavior of the continuous composite beam with external prestressing before and after cracking was discussed by using the deflection and strain data.

A comprehensive FE model for slender HSC columns under biaxial eccentric loads

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.;Sun, Wei
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.17-25
    • /
    • 2020
  • A finite element (FE) model for analyzing slender reinforced high-strength concrete (HSC) columns under biaxial eccentric loading is formulated in terms of the Euler-Bernoulli theory. The cross section of columns is divided into discrete concrete and reinforcing steel fibers so as to account for varied material properties over the section. The interaction between axial and bending fields is introduced in the FE formulation so as to take the large-displacement or P-delta effects into consideration. The proposed model aims to be simple, user-friendly, and capable of simulating the full-range inelastic behavior of reinforced HSC slender columns. The nonlinear model is calibrated against the experimental data for slender column specimens available in the technical literature. By using the proposed model, a numerical study is carried out on pin-ended slender HSC square columns under axial compression and biaxial bending, with investigation variables including the load eccentricity and eccentricity angle. The calibrated model is expected to provide a valuable tool for more efficiently designing HSC columns.

Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading

  • Chen, Jiye;Zhuang, Yong;Fang, Hai;Liu, Weiqing;Zhu, Lu;Fan, Ziyan
    • Steel and Composite Structures
    • /
    • 제31권2호
    • /
    • pp.133-148
    • /
    • 2019
  • This paper reports on the energy absorption characteristics of a lattice-web reinforced composite sandwich cylinder (LRCSC) which is composed of glass fiber reinforced polymer (GFRP) face sheets, GFRP lattice webs, polyurethane (PU) foam and ceramsite filler. Quasi-static compression experiments on the LRCSC manufactured by a vacuum assisted resin infusion process (VARIP) were performed to demonstrate the feasibility of the proposed cylinders. Compared with the cylinders without lattice webs, a maximum increase in the ultimate elastic load of the lattice-web reinforced cylinders of approximately 928% can be obtained. Moreover, due to the use of ceramsite filler, the energy absorption was increased by 662%. Several numerical simulations using ANSYS/LS-DYNA were conducted to parametrically investigate the effects of the number of longitudinal lattice webs, the number of transverse lattice webs, and the thickness of the transverse lattice web and GFRP face sheet. The effectiveness and feasibility of the numerical model were verified by a series of experimental results. The numerical results demonstrated that a larger number of thicker transverse lattice webs can significantly enhance the ultimate elastic load and initial stiffness. Moreover, the ultimate elastic load and initial stiffness were hardly affected by the number of longitudinal lattice webs.

Experiments on influence of foundation mass on dynamic characteristic of structures

  • Pham, Trung D.;Hoang, Hoa P.;Nguyen, Phuoc T.
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.505-511
    • /
    • 2018
  • Recently, a new foundation model called "Dynamic foundation model" was proposed for the dynamic analysis of structures on the foundation. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameter of foundation during vibration. However, the relationship of foundation property parameters with the experimental parameter of the influence of foundation mass also has not been established in previous research. Hence, the purpose of the paper presents a simple experimental model in order to establish relationships between foundation properties such as stiffness, depth of foundation and experimental parameter of the influence of foundation mass. The simple experimental model is described by a steel plate connected with solid rubber layer as a single degree of freedom system including an elastic spring connected with lumped mass. Based on natural circular frequencies of the experimental models determined from FFT analysis plots of the time history of acceleration data, the experimental parameter of the influence of foundation mass is obtained and the above relationships are also discussed.

풍화암 지반에 설치된 소구경말뚝의 거동에 관한 연구 (An Experimental Study on the Behavior of Miscopiles installed in Weathered Weak Rock)

  • 박성재;정경환;이세훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.389-396
    • /
    • 1999
  • In this study compressive and tensile load tests have been performed to investigate reinforcing effect and load transfer mechanism of small diameter piles installed in the foundation soil for the marine suspension bridge. Load tests were carried out on steel plate with diameters of 50cm, 100cm and 150cm varying loads starting from 39 tons up to 314 tons. Small diameter piles were proved to behavior like as friction piles and loads were not transmitted to the bottom of piles. From pull-out tests, the uplift capacity of small diameter piles was largely influenced by reinforcing materials compared to frictional resistance between piles and adjacent soils. The bearing capacity of small diameter piles appeared to be higher than the ultimate bearing capacity evaluated using static formulae. The load carrying capacity of small diameter piles was superior to the bored piles with a similar size. Thus, ultimate bearing capacity estimated from static formulae can provide conservative designs and thereby resulting in economic disadvantages. A further study to accumulate data regarding various soil conditions is recommended for an improved estimation of bearing capacity of piles with small diameter.

  • PDF

복합적층판 이론에 의한 철근콘크리트 슬래브교의 해석 (Analysis of Reinforced Concrete Slab Bridges by the Composite Laminates Theory)

  • 한봉구;김덕현
    • 복합신소재구조학회 논문집
    • /
    • 제1권1호
    • /
    • pp.9-15
    • /
    • 2010
  • In this paper, A reinforced concrete slab bridges is analyzed by the composite laminates theory. Both the geometry and the material of the cross section of the reinforced concrete slab bridge are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, Bij = 0, and D16 = D26 = 0. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This slab with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and specially orthotropic laminates theory are used for analysis. The result of specially orthotropic laminates theory analysis is modified to obtain the solution of the beam analysis. The result of this paper can be used for reinforced concrete slab analysis by the engineers with undergraduate study in near future.

  • PDF

Determination of plastic hinge properties for static nonlinear analysis of FRP-strengthened circular columns in bridges

  • Amiri, Gholamreza Ghodrati;Jahromi, Azadeh Jaberi;Mohebi, Benyamin
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.435-455
    • /
    • 2012
  • In the recent years, rehabilitation of structures, strengthening and increasing the ductility of them under seismic loads have become so vital that many studies has been carried out on the retrofit of steel and concrete members so far. Bridge piers are very important members concerning rehabilitation, in which the plastic hinging zone is very vulnerable. Pier is usually confined by special stirrups predicted in the design procedure; moreover, fiber-reinforced polymers (FRP) jackets are used after construction to confine the pier. FRP wrapping of the piers is one of the most effective ways of increasing moment and ductility capacity of them, which has a growing application due to its relative advantages. In many earthquake-resistant bridges, reinforced concrete columns have a major defect which could be retrofitted in different ways like using FRP. After rehabilitation, it is important to check the strengthening adequacy by dynamic nonlinear analysis and precise modeling of material properties. If the plastic hinge properties are simplified for the strengthened members, as the simplified properties which FEMA 356 proposes for non-strengthened members, static nonlinear analysis could be performed more easily. Current paper involves this matter and it is intended to determine the plastic hinge properties for static nonlinear analysis of the FRP-strengthened circular columns.

Output-only modal parameter identification of civil engineering structures

  • Ren, Wei-Xin;Zong, Zhou-Hong
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.429-444
    • /
    • 2004
  • The ambient vibration measurement is a kind of output data-only dynamic testing where the traffics and winds are used as agents responsible for natural or environmental excitation. Therefore an experimental modal analysis procedure for ambient vibration testing will need to base itself on output-only data. The modal analysis involving output-only measurements presents a challenge that requires the use of special modal identification technique, which can deal with very small magnitude of ambient vibration contaminated by noise. Two complementary modal analysis methods are implemented. They are rather simple peak picking (PP) method in frequency domain and more advanced stochastic subspace identification (SSI) method in time domain. This paper presents the application of ambient vibration testing and experimental modal analysis on large civil engineering structures. A 15 storey reinforced concrete shear core building and a concrete filled steel tubular arch bridge have been chosen as two case studies. The results have shown that both techniques can identify the frequencies effectively. The stochastic subspace identification technique can detect frequencies that may possibly be missed by the peak picking method and gives a more reasonable mode shapes in most cases.