• Title/Summary/Keyword: stearoyl-CoA desaturase 1

Search Result 56, Processing Time 0.024 seconds

Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

  • Lim, Dajeong;Chai, Han-Ha;Lee, Seung-Hwan;Cho, Yong-Min;Choi, Jung-Woo;Kim, Nam-Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1075-1083
    • /
    • 2015
  • Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson's correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle.

Enrichment of Short-Chain Ceramides and Free Fatty Acids in the Skin Epidermis, Liver, and Kidneys of db/db Mice, a Type 2 Diabetes Mellitus Model

  • Kim, Minjeong;Jeong, Haengdueng;Lee, Buhyun;Cho, Yejin;Yoon, Won Kee;Cho, Ahreum;Kwon, Guideock;Nam, Ki Taek;Ha, Hunjoo;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.27 no.5
    • /
    • pp.457-465
    • /
    • 2019
  • Patients with diabetes mellitus (DM) often suffer from diverse skin disorders, which might be attributable to skin barrier dysfunction. To explore the role of lipid alterations in the epidermis in DM skin disorders, we quantitated 49 lipids (34 ceramides, 14 free fatty acids (FFAs), and cholesterol) in the skin epidermis, liver, and kidneys of db/db mice, a Type 2 DM model, using UPLC-MS/MS. The expression of genes involved in lipid synthesis was also evaluated. With the full establishment of hyperglycemia at the age of 20 weeks, remarkable lipid enrichment was noted in the skin of the db/db mice, especially at the epidermis and subcutaneous fat bed. Prominent increases in the ceramides and FFAs (>3 fold) with short or medium chains ($LXR{\alpha}/{\beta}$ and $PPAR{\gamma}$, nuclear receptors promoting lipid synthesis, lipid synthesis enzymes such as elongases 1, 4, and 6, and fatty acid synthase and stearoyl-CoA desaturase were highly expressed in the skin and livers of the db/db mice. Collectively, our study demonstrates an extensive alteration in the skin and systemic lipid profiles of db/db mice, which could contribute to the development of skin disorders in DM.

The effects of Hemistepta lyrata Bunge (Bunge) fractionated extract on liver X receptor α-dependent lipogenic genes in hepatocyte-derived cells (간 실질세포주에서 니호채(泥胡菜) 분획물이 liver X receptor α 의존적 지방 생성 유전자의 발현에 미치는 효과)

  • Kim, Jae Kwang;Cho, Il Je;Kim, Eun Ok;Jung, Dae Hwa;Ku, Sae Kwang;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.28 no.3
    • /
    • pp.255-269
    • /
    • 2020
  • Objectives : Hemistepta lyrata Bunge (Bunge) is a wild herb that has been used for managing fever and wound in Korean Traditional Medicine. The present study explored the effects of H. lyrata extract on liver X receptor (LXR) α-dependent lipogenic genes in hepatocyte-derived cells. Methods : After HepG2 cells or Huh7 cells were pre-treated with 1-10 ㎍/mL of H. lyrata extract or its fractionated extract for 0.5 h, the cells were subsequently exposed to LXR ligand for 6-24 h. Cell viability, LXR response element (LXRE)-driven luciferase activity, sterol regulatory element binding protein-response element (SREBP-RE)-driven luciferase activity, SREBP-1c expression, and mRNA levels of LXRα and its-dependent target genes were determined. In addition, LC-MS/MS analysis was conducted to explore major compounds in H. lyrata-chloroform fractionated extract #4 (HL-CF4). Results : Of various H. lyrata extracts tested, chloroform extract and its fractionated extract #4, HL-CF4, significantly decreased T0901317-mediated SREBP-1c expression. In addition, HL-CF4 significantly reduced LXRE atransactivation and LXRα mRNA expression without any cytotoxicity. Moreover, HL-CF4 prevented the SREBP-RE-driven luciferase activity and mRNA levels of fatty acid synthase and stearoyl-CoA desaturase-1 induced by T0901317. Results from LC-MS/MS analysis at positive/negative mode indicated that HL-CF4 contained several compounds showing m/z 197.1176 (C11H17O3), 693.2913/227.1069 (C38H45O12/C15H15O2), 203.1797 (C15H23), 181.1225 (C11H17O2), 591.2957 (C35H43O8), 379.1040 (C18H19O9), 409.1509 (C20H25O9), 309.1348 (C16H21O6), 391.1404 (C20H23O8), and 669.2924/389.1248 (C36H45O12/C20H21O8). Conclusion : Based on its inhibition of the LXRα-dependent signaling pathway, H. lyrata chloroform extract and HL-CF4 have prophylactic potentials for managing non-alcoholic fatty liver.

Effects of feeding high-energy diet on growth performance, blood parameters, and carcass traits in Hanwoo steers

  • Kang, Dong Hun;Chung, Ki Yong;Park, Bo Hye;Kim, Ui Hyung;Jang, Sun Sik;Smith, Zachary K.;Kim, Jongkyoo
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1545-1555
    • /
    • 2022
  • Objective: Our study aimed to investigate the effects of a 2% increase in dietary total digestible nutrients (TDN) value during the growing (7 to 12 mo of age) and fattening (13 to 30 mo of age) period of Hanwoo steers. Methods: Two hundred and twenty Hanwoo steers were assigned to one of two treatments: i) a control group (basal TDN, BTDN, n = 111 steers, growing = 70.5%, early fattening = 71.0%, late fattening = 74.0%) or high TDN (HTDN, n = 109 steers, growing = 72.6%, early = 73.1%, late = 76.2%). Growth performance, carcass traits, blood parameters, and gene expression of longissimus dorsi (LD) (7, 18, and 30 mo) were quantified. Results: Steers on the BTDN diets had increased (p≤0.02) DMI throughout the feeding trial compared to HTDN, but gain did not differ appreciably. A greater proportion of cattle in HTDN received Korean quality grade 1 (82%) or greater compared to BTDN (77%), while HTDN had a greater yield grade (29%) than BTDN (20%). Redness (a*) of LD muscle was improved (p = 0.021) in steers fed HTDN. Feeding the HTDN diet did not alter blood parameters. Steers fed HTDN diet increased (p = 0.015) the proportion of stearic acid and tended to alter linoleic acid. Overall, saturated, unsaturated, monounsaturated, and polyunsaturated fatty acids of LD muscle were not impacted by the HTDN treatment. A treatment by age interaction was noted for mRNA expression of myosin heavy chain (MHC) IIA, IIX, and stearoyl CoA desaturase (SCD) (p≤0.026). No treatment effect was detected on gene expression from LD muscle biopsies at 7, 18, and 30 mo of age; however, an age effect was detected for all variables measured (p≤0.001). Conclusion: Our results indicated that feeding HTDN diet could improve overall quality grade while minimum effects were noted in gene expression, blood parameters, and growing performance. Cattle performance prediction in the feedlot is a critical decision-making tool for optimal planning of cattle fattening and these data provide both benchmark physiological parameters and growth performance measures for Hanwoo cattle feeding enterprises.

Effect of ciglitazone on adipogenic transdifferentiation of bovine skeletal muscle satellite cells

  • Zhang, Junfang;Li, Qiang;Yan, Yan;Sun, Bin;Wang, Ying;Tang, Lin;Wang, Enze;Yu Jia;Nogoy, Kim Margarette Corpuz;Li, Xiangzi;Choi, Seong-Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.934-953
    • /
    • 2021
  • Ciglitazone is a member of the thiazolidinedione family, and specifically binds to peroxisome proliferator-activated receptor-γ (PPARγ), thereby promoting adipocyte differentiation. We hypothesized that ciglitazone as a PPARγ ligand in the absence of an adipocyte differentiation cocktail would increase adiponectin and adipogenic gene expression in bovine satellite cells (BSC). Muscle-derived BSCs were isolated from six, 18-month-old Yanbian Yellow Cattle. The BSC were cultured for 96 h in differentiation medium containing 5 µM ciglitazone (CL), 10 µM ciglitazone (CM), or 20 µM ciglitazone (CH). Control (CON) BSC were cultured only in a differentiation medium (containing 2% horse serum). The presence of myogenin, desmin, and paired box 7 (Pax7) proteins was confirmed in the BSC by immunofluorescence staining. The CL, CM, and CH treatments produced higher concentrations of triacylglycerol and lipid droplet accumulation in myotubes than those of the CON treatment. Ciglitazone treatments significantly increased the relative expression of PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, fatty acid synthase, stearoyl-CoA desaturase, and perilipin 2. Ciglitazone treatments increased gene expression of Pax3 and Pax7 and decreased expression of myogenic differentiation-1, myogenin, myogenic regulatory factor-5, and myogenin-4 (p < 0.01). Adiponectin concentration caused by ciglitazone treatments was significantly greater than CON (p < 0.01). RNA sequencing showed that 281 differentially expressed genes (DEGs) were found in the treatments of ciglitazone. DEGs gene ontology (GO) analysis showed that the top 10 GO enrichment significantly changed the biological processes such as protein trimerization, negative regulation of cell proliferation, adipocytes differentiation, and cellular response to external stimulus. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that DEGs were involved in the p53 signaling pathway, PPAR signaling pathway, biosynthesis of amino acids, tumor necrosis factor signaling pathway, non-alcoholic fatty liver disease, PI3K-Akt signaling pathway, and Wnt signaling pathway. These results indicate that ciglitazone acts as PPARγ agonist, effectively increases the adiponectin concentration and adipogenic gene expression, and stimulates the conversion of BSC to adipocyte-like cells in the absence of adipocyte differentiation cocktail.

Anti-Lipogenic Effect of Functional Cereal Samples on High Sucrose Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice (고당식이로 유도된 비알코올성 지방간 마우스에서 기능성 잡곡의 지질 대사 개선 효과)

  • Lee, Ko-Eun;Song, Jia-Le;Jeong, Byung-Jin;Jeong, Jong-Sung;Huh, Tae-Gon;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.789-796
    • /
    • 2016
  • The anti-lipogenic effect of cereal samples on high sucrose diet (HSD)-induced non-alcoholic fatty liver disease (NAFLD) in mice was studied. We divided C57BL/6 mice into various groups based on 8 weeks of treatment with three types of cereal samples (HSD+WR, HSD diet containing 40% white rice; HSD+MCG, HSD diet containing 40% mixed cereal grain; HSD+AO-MCG, HSD diet containing 40% mixed antiobesity-cereal grain). After the experimental period, body weight changes, liver weights, serum lipid profiles, and hepatic fatty acid metabolism-related gene expression levels were determined. We found that HSD+WR, HSD+MCG, and HSD+AO-MCG treatments reduced body weight and liver weight, especially HSD+MCG and HSD+AO-MCG effectively reduced levels of serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol. However, high density lipoprotein cholesterol levels increased compared to the control group. Furthermore, expression of hepatic lipogenic genes such as sterol regulatory element-binding protein-1c, acetyl-coenzyme A carboxylase, fatty acid synthase, stearoyl-coenzyme A desaturase-1, cluster of differentiation, and $PPAR-{\gamma}$ (peroxisome proliferator activated receptor ${\gamma}$) decreased, whereas expression of ${\beta}-oxidation$ genes such as $PPAR-{\alpha}$ and carnitine palmitoyl transferase-1 increased following HSD+MCG and HSD+AO-MCG treatment compared with levels in HSD+WR and control groups. These results suggest that the functional cereal samples, especially HSD+AO-MCG treatment, improved hepatic steatosis triggered by an HSD-induced imbalance in hepatic lipid metabolism.