• Title/Summary/Keyword: steam-power

Search Result 1,324, Processing Time 0.025 seconds

Implementation Status of Performance Demonstration Program for Steam Generator Tubing Analysts in Korea

  • Cho, Chan-Hee;Lee, Hee-Jong;Yoo, Hyun-Ju;Nam, Min-Woo;Hong, Sung-Yull
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • Some essential components in nuclear power plants are periodically inspected using non-destructive examinations, for example ultrasonic, eddy current and radiographic examinations, in order to determine their integrity. These components include nuclear power plant items such as vessels, containments, piping systems, pumps, valves, tubes and core support structure. Steam generator tubes have an important safety role because they constitute one of the primary barriers between the radioactive and non-radioactive sides of the nuclear power plant. There is potential that if a tube bursts while a plant is operating, radioactivity from the primary coolant system could escape directly to the atmosphere. Therefore, in-service inspections are critical in maintaining steam generator tube integrity. In general, the eddy current testing is widely used for the inspection of steam generator tubes due to its high inspection speed and flaw detectability on non-magnetic tubes. However, it is not easy to analyze correctly eddy current signals because they are influenced by many factors. Therefore, the performance of eddy current data analysts for steam generator tubing should be demonstrated comprehensively. In Korea, the performance of steam generator tubing analysts has been demonstrated using the Qualified Data Analyst program. This paper describes the performance demonstration program for steam generator tubing analysts and its implementation results in Korea. The pass rate of domestic analysts for this program was 71.4%.

Water Circulation Characteristics of a Water/Steam Receiver for Solar Power Tower System at Various Heat Fluxes (타워형 태양열 발전 흡수기의 열유속에 따른 수순환 특성 연구)

  • Seo, Ho-Young;Kim, Jong-Kyu;Kang, Yong-Heack;Kim, Yong-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • This paper describes water circulation characteristics of a water/steam receiver at various heat fluxes. The water/steam receiver for a solar tower power system is a natural circulation type. Experimental conditions of water and steam were set at a pressure of 5 bar and temperature of $151.8^{\circ}C$. The experimental device for the water/steam receiver consisted of a steam drum, upper/lower header, riser tubes, and downcomer tube. The experiments were conducted by varying heat fluxes in terms of mass flow rate in each riser tube. However, the total mass flow rate on the riser tubes was fixed at 217.4 g/s. For the uniform heat flux, while the water temperature of the steam drum and upper header were kept at steady state, the temperature of the lower header was fluctuated. For the non-uniform heat flux, while the temperature of the steam drum was kept steady state, the temperature difference increased in the right and left side of the upper header, and the temperature of the lower header was fluctuated.

Energy and Exergy Analysis of a Steam Turbine Cogeneration System (증기터빈 열병합 시스템에 대한 에너지 및 엑서지 해석)

  • Cho, Sung-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1397-1405
    • /
    • 2009
  • In recent decades, exergy analysis has been holding spotlight as a useful tool in the design, assessment, optimization, and improvement of energy system. This paper presents the results of the energy and exergy analysis of a steam turbine cogeneration system for industrial complex using two efficiency concepts of conventional one and exergetic one. In order to obtain the destroyed exergy of each component, mathematical analysis is conducted by using exergy balance and the second law of thermodynamics, according as the parameters are changed, such as the ratio of returned process steam, process steam supplied, temperature and pressure of boiler and power. The computer program developed in this study can determine the efficiencies and exergy destroyed at each component of cogeneration system. As a result of this study, a component having the largest destroyed exergy was boiler. And closed and opened feedwater heater had the lowest one. The affects to the cogeneration system due to the variation of process steam flow and return rate of condensed water is shown that the total electric power efficiency(${\eta}_E$) is decreased as increasing the return rate of condensed water under constant process steam flow. As the boiler pressure is increased for the more production of electricity, the efficiency of cogeneration system was decreased.

  • PDF

Air Similarity Test for the Evaluation of Aerodynamic Performance of Steam Turbine (스팀터빈의 공력성능 평가를 위한 공기 상사실험)

  • Lim, Byeung-Jun;Lee, Eun-Seok;Yang, Soo-Seok;Lee, Ik-Hyoung;Kim, Young-Sang;Kwon, Gee-Bum
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.29-35
    • /
    • 2004
  • The turbine efficiency is an important factor in power plant, and accurate evaluation of steam turbine performance is the key issue in turbo machinery industry. The difficulty of evaluating the steam turbine performance due to its high steam temperature and pressure environment makes the most steam turbine tests to be replaced by air similarity test. This paper presents how to decide the similarity conditions of the steam turbine test and describes its limitations and assumptions. The test facility was developed and arranged to conduct an air similarity turbine performance test with various inlet pressure, temperature and mass flow rate. The eddy-current type dynamometer measures the turbine-generated shaft power and controls the rotating speed. Pressure ratio of turbine can be controled by back pressure control valve. To verify its test results, uncertainty analysis was performed and relative uncertainty of turbine efficiency was obtained.

Exergy and exergoeconomic analysis of hydrogen and power cogeneration using an HTR plant

  • Norouzi, Nima;Talebi, Saeed;Fani, Maryam;Khajehpour, Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2753-2760
    • /
    • 2021
  • This paper proposes using sodium-cooled fast reactor technologies for use in hydrogen vapor methane (SMR) modification. Using three independent energy rings in the Russian BN-600 fast reactor, steam is generated in one of the steam-generating cycles with a pressure of 13.1 MPa and a temperature of 505 ℃. The reactor's second energy cycles can increase the gas-steam mixture's temperature to the required amount for efficient correction. The 620 ton/hr 540 ℃ steam generated in this cycle is sufficient to supply a high-temperature synthesis current source (700 ℃), which raises the steam-gas mixture's temperature in the reactor. The proposed technology provides a high rate of hydrogen production (approximately 144.5 ton/hr of standard H2), also up to 25% of the original natural gas, in line with existing SMR technology for preparing and heating steam and gas mixtures will be saved. Also, exergy analysis results show that the plant's efficiency reaches 78.5% using HTR heat for combined hydrogen and power generation.

Heat Transfer Characteristics of High Temperature molten salt storage for Solar Thermal Power Generation (태양열 발전을 위한 고온 축열 물질의 열전달 특성)

  • Aiming, Mao;KIm, Ki-Man;Han, Gui-Young;Seo, Tae-Beom;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.63-69
    • /
    • 2007
  • The heat transfer characteristics of inorganic salt for high temperature heat storage material of solar power system were examined. The inorganic salts employed in this study was a mixture of $NaNO_3$ and $KNO_3$ and the operating temperature range was determined by measuring the melting temperature with DSC and by measuring the thermal decomposition temperature with TGA. The heat transfer characteristics was qualitatively obtained in terms of temperature profiles of salt in the tanks during the heat storage and heat release process as a function of steam flow rates, steam inlet temperature and the inlet position of steam. The effects of steam flow rates and inlet temperature of steam were experimentally determined and the effect of natural convection was observed due to significant density difference with temperature.

Development of Program Evaluating the Effects on the Secondary Side of Nuclear Power Plant of Steam Generator due to Foreign Objects (원자력발전소 증기발생기 2차측 Free-Span 잔류물질 영향평가 전산 프로그램 개발)

  • Yu, Hyeon-Ju
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.26-28
    • /
    • 2006
  • When materials such as metal are into the secondary side of steam generator, they, so called foreign objects, may have influences on the integrity of the steam generator tubes. They cause the tube wear due to the relative motion between the tubes and foreign objects and the tube impact due to flow. The best way to avoid the effects is to remove all the foreign objects. However, it is not easy to remove the foreign materials thoroughly due to their condition such as the location. Considering the wear and impact by the foreign materials, KEPRI(Korea Electric Power Research Institute) developed the methodology to evaluate the foreign materials analytically. This methodology was described with a computer program in order to obtain the fast results. The program informs whether the tubes have the structural integrity when the foreign material strikes the tubes. Moreover, this gives us the remaining life of the steam generator tubes. In this paper, the program, which evaluates the effects of the foreign objects in the secondary side of steam generator, is introduced.

  • PDF

SIMULATION OF THERMAL STRATIFICATION IN INLET NOZZLE OF STEAM GENERATOR

  • Ji, Joon-Suk;Youn, Bum-Su;Jeong, Hyun-Chul;Kim, Sang-Nyung
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • Due to thermal hydraulics phenomena, such as thermal stratification, various events occur to the parts of a nuclear power plant during their lifetimes: e.g. cracked and dislocated pipes and thermally fatigued, bent, and damaged supports. Due to the operational characteristics of the parts of the steam generator feedwater inlet horizontal pipe, thermal stratification takes place particularly frequently. However, the thermal stress due to thermal stratification at the steam generator feedwater inlet horizontal pipe was not reflected in the design stage of old plants(Kori Unit No.1, 2, 3 and 4, Yeonggwang Unit No. 1 and 2, and Uljin Unit No. 1 and 2; referred to as old-style power plants hereinafter). Accordingly, a verification experiment was performed for thermal stratification in the horizontal inlet nozzle steam generator of old-style plants. If thermal stratification occurred in the horizontal pipe of an old-style power plant, numerical analysis of the temperature distribution of the pipes and fluids was conducted. The temperature distributions were compared at the curved part of the pipe and the horizontal pipe before and after the installation of the improved thermal sleeves designed to alleviate thermal stress due to thermal stratification. The thermal stress reduction measure was proven effective at the steam generator inlet horizontal pipe and the curved part of the pipe.

Performance Analysis of a Steam Injected Gas Turbine Combined Heat and Power System Considering Turbine Blade Temperature Change (터빈 블레이드 온도 변화를 고려한 증기분사 가스터빈 열병합발전 시스템의 성능해석)

  • Kang, Soo Young;Kim, Jeong Ho;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.18-24
    • /
    • 2012
  • This study simulated the operation of a steam injected gas turbine combined heat and power (CHP) system. A full off-design analysis was carried out to examine the change in the turbine blade temperature caused by steam injection. The prediction of turbine blade temperature was performed for the operating modes suggested in the previous study where the limitation of compressor surge margin reduction was analyzed in the steam injected gas turbine. It was found that both the fully injected and partially injected operations suggested in the previous study would cause the blade temperature to exceed that of the pure CHP operation and the under-firing operation would provide too low blade temperature. An optimal operation was proposed where both the turbine inlet temperature and the injection amount were modulated to keep both the reference turbine blade temperature and the minimum compressor surge margin. The modulation was intended to maintain a stable compressor operation and turbine life. It was shown that the optimal operation would provide a larger power output than the under-firing operation and a higher efficiency than the original partially injected operation.

Air Similarity Test and Analysis of Steam Turbine Labyrinth Seal for Leakage Verification (스팀터빈용 래비린스 실의 누설량 규명을 위한 공기상사 실험 및 해석)

  • Ahn, Sang-Kyu;Kim, Seung-Jong;Lee, Yong-Bok;Kim, Chang-Ho;Ha, Tae-Wong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1149-1149
    • /
    • 2006
  • The leakage characteristic is an important factor in power plant. However, most of power plant have efficiency problem which is occurred leaking between high pressure steam turbine axle and stator. The labyrinth seal which is used between the main turbine axle and stator in the power plant. Because it is able to be non-contact seal and it is minimize clearance to decrease the leakage. But its actual system is too huge to experiment. Therefore, most steam turbine seal performance tests were conducted by air similarity test. This paper described a test facility and program for air similarity test of high pressure steam turbine seal. A test facility has been designed and built to evaluate leakage verification of labyrinth seal. The test facility consist of air compressor, anti-swirl labyrinth seal for 1/3 air similarity model, pressure transducer, air flow measure system, instrumentation and auxiliary system. For evaluation of steam turbine seal performance, the air similarity test of labyrinth seal leakage verification was conducted and we compared experiment data and analysis result.

  • PDF