• 제목/요약/키워드: steam setting

검색결과 31건 처리시간 0.022초

A Comparison between the Thermomechanical and Structural Changes in Textured PET Yarns after Superheated Steam and Dry Heat Treatment

  • Karakas, Hale-Canbaz
    • Fibers and Polymers
    • /
    • 제5권1호
    • /
    • pp.19-24
    • /
    • 2004
  • PET yarns textured at different texturing conditions were treated with superheated steam or dry heat at different temperatures for different times. The effects of the treatment conditions on the thermomechanical and structural changes of the yarn were examined by shrinkage, X-ray diffraction and birefringence measurements. With increase in superheated steam temperature, the crystalline orientation factor and birefringence decreased, whereas crystal size increased. Dry heat treatment had a smaller effect on shrinkage and structural properties in comparison with superheated steam treatment. The additional shrinkage after texturing process was investigated. The effect of heat-setting in both media was more significant at $200^{\circ}C$. The time dependence of the properties was not linear.

신축성사 개발 및 물성평가 : 수축률 및 신축성의 평가 (Preparation and Characterization of Stretch Fabric : Shrinkage and Elasticity Properties)

  • 강기혁;김영성;손영아
    • 한국염색가공학회지
    • /
    • 제22권2호
    • /
    • pp.173-179
    • /
    • 2010
  • In this study, we determine the stretch and shrinkage properties of conjugated yarns. The shrinkage(%) and elasticity(%) were determined by applying twist conditions of 0, 350, 800, 1000, 1200, 1400, 1600, 2000 T/M (twisting per meter). It is found that the shrinkage(%) and elasticity(%) gradually decreased with increasing T/M. Especially the elasticity(%) dramatically decreased over 1400 T/M condition. In contrast, it is showed that the handle and drapery properties decreased below 1000 T/M, which indicates that the optimal T/M condition could be 1000~1400. The effect of shrinkage(%) and elasticity(%) with different steam setting temperatures (60, 70, 80 and $90^{\circ}C$) was also determined. The shrinkage(%) decreased with increasing setting temperature, while the elasticity not changed. In this context, the optimal steam setting temperature could be $80^{\circ}C$ because it is not easy to weave with the yarns which was set below $80^{\circ}C$. The elasticity(%) decreased with increasing the density of warp and weft. To produce soft handle, excellent drapery and good stretch fabrics, the warp density needs to be reached by 90% of the ideal warp density. In the case of NaOH treatments to the fabrics, the elasticity(%) increased with increasing weight reduction. Therefore, this study have demonstrated that the conjugated yarns with core yarn and the SDY CD(cation dyeable spindraw yarn) as an effect yarn would be appropriate to produce excellent mixture-yarn, which displays clean appearance, good handle and excellent elasticity, The optimized conditions are as follows; 1000~1200 twist per meter, $80^{\circ}C$ steam setting temperature, 90% of ideal warp density and relaxation condition treated with 5g/l NaOH concentration.

수증기의 잠열을 이용한 메탄올 수증기 개질기의 특성 연구 (Study on the Characteristics of Methanol Steam Reformer Using Latent Heat of Steam)

  • 천욱래;안강섭;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.19-24
    • /
    • 2018
  • Fuel cells are used to generate electricity with a reformer. In particular, methanol has various advantages among the fuels for reformer. Methanol steam reformer devices can efficiently supply hydrogen to PEM fuel cell. This study investigated the optimal operation conditions of a methanol steam reforming process. For this purpose, aspen HYSYS was used for the optimization of reforming process. The optimal operating condition could be designed by setting independent variables such as temperature, pressure and steam to carbon ratio (SCR). The optimal temperature and steam to carbon ratio were $250-270^{\circ}C$ and 1.3-1.5, respectively. It is advantageous to operate at a pressure of 15-20 barg, considering the performance of the hydrogen purifier. In addition, a heat exchange network was designed to supply heat constantly to reformer through the latent heat of steam.

초기 양생조건에 따른 고강도 콘크리트의 강도발현에 관한 실험적 연구 (An Experimental Study on the Strength Development of High Strength Concrete in Various Curing Conditions at an Early-age)

  • 권영호;이태왕
    • 콘크리트학회논문집
    • /
    • 제29권2호
    • /
    • pp.141-148
    • /
    • 2017
  • 본 연구는 PC부재의 공장생산에 있어서 여러 가지 증기양생 조건의 변수에 따른 고강도 콘크리트의 초기 압축강도 발현성상을 실험적으로 검증하고, 최적 양생조건을 확인하기 위한 것이다. 40 MPa 이상의 고강도 콘크리트 제조에는 보통 포틀랜드 시멘트를 사용하였으며, 콘크리트의 배합조건은 물-시멘트비 3종류(W/C 25%, 35% 및 45%)를 대상으로 하였다. 본 연구의 증기양생 변수로 (1) 전치양생 시간 3종류, (2) 최고 양생온도 3종류, (3) 최고온도 유지시간 3종류, (4) 승온 및 강온양생 온도 1종류 등을 대상으로 재령별 압축강도 시험을 실시하였다. 또한, 증기양생 및 표준양생에 따른 재령별 강도발현을 비교하였다. 실험결과, (1) 전치양생은 콘크리트의 초기 응결시간 이상, (2) 최고 양생온도는 $55^{\circ}C$ 이하, (3) 최고온도 유지시간은 6시간 이하로 하는 것이 증기양생 고강도 콘크리트의 강도발현에 적합한 양생조건으로 나타났다. 또한, 재령 28일에서 증기양생과 표준양생의 압축강도 발현성상의 역전현상이 발생하였다. 따라서 이러한 양생조건으로 PC부재의 생산성 및 현장관리를 위한 기초자료로 제시하고자 한다.

편망 후 열처리 온도가 PBS 모노필라멘트사의 물리적 특성에 미치는 영향 (Effects of heat setting temperature conditions on the mechanical properties of Polybutylene succinate (PBS) monofilament yarn after net-making)

  • 박성욱;김성훈
    • 수산해양기술연구
    • /
    • 제48권1호
    • /
    • pp.20-28
    • /
    • 2012
  • The monofilament with 0.304mm of diameter was produced using a polybutylene succinate (PBS) resin, and a gill net was made by it. We investigated the impact of heat setting temperature on the mechanical properties, knot state and height of gill net. Heat treatment was carried out using the high pressure steam machine for 20 minutes at temperature of $55^{\circ}C$, $60^{\circ}C$, $70^{\circ}C$ and $75^{\circ}C$. Before heat treatment, the strength and elongation of PBS monofilament were estimated to be $48.1kg/mm^2$, 23.8% at unknot, $37.6kg/mm^2$, 18.8% at single knot, $26.6kg/mm^2$, 22.9% at double knot in dry condition, respectively. The strength and elongation of PBS monofilament with double knot were decreased as heat setting temperature increased, and the decreasing rate of strength was showed to be higher than that of elongation. It was not found any differences in strength and elongation of PBS monofilament yarn with double knot at the $65^{\circ}C$ and $70^{\circ}C$ of heat setting temperature by 5% significance of T-test, but there was a significant difference at the $70^{\circ}C$ and $75^{\circ}C$ of heat setting temperature. The net's height and length from leg to leg appeared no differences at the $70^{\circ}C$ and $75^{\circ}C$ of heat setting temperature. In results, it was investigated that the PBS monofilament gill net with the maximized physical properties could be manufactured at $70^{\circ}C$ of heat setting temperature using a high pressure steam machine for 20 minutes.

HTE-STEAM(융합인재교육) 프로그램 개발 및 효과 : 자유학기제 수업 활용 사례를 중심으로 (Development and Effect of HTE-STEAM Program: Focused on Case Study Application for Free-Learning Semester)

  • 김용기;김형범;조규동;한신
    • 대한지구과학교육학회지
    • /
    • 제11권3호
    • /
    • pp.224-236
    • /
    • 2018
  • 이 연구의 목적은 중학생들의 인지 발달과 융합인재소양을 향상시키기 위해 추론 중심의 HTE-STEAM 프로그램을 개발하여 이에 대한 학교현장에서의 효과성을 알아보고자 하였다. 연구대상은 우리나라 중부지역에 위치한 두 개 중학교에 재학 중인 자유학기제 기간 동안 HTE-STEAM 프로그램에 참여한 중학생들로, 무선 표집에 의해 선정된 202명의 학생들이다. 연구결과는 다음과 같다. 첫째, HTE-STEAM 프로그램 수업의 전 후에 대한 통계적 검정에서 유의미한 값을 나타내었으며(p<.05), 연구 참여자들의 논리적 사고력 수준은 수업전과 비교하여 수업 후에 향상되었다. 둘째, STEAM 태도 검사의 사전 사후 점수 차에 의한 대응표본 t검점에서 모두 유의미한 통계적 검정 결과를 나타내어(p<.05), HTE-STEAM 프로그램이 연구 참여자들에게 융합인재소양에 대한 긍정적인 영향을 끼친 것으로 나타났다. 셋째, HTE-STEAM 만족도 검사에서는 하위 구인의 평균값이 3.27~4.12를 나타내어 전체적으로 긍정적인 반응을 나타내었다. 따라서 이 연구에서 최종 구안한 지구과학의 '재해 재난과 안전'이라는 주제의 HTE-STEAM 프로그램은 연구 참여자들에게 추론에 의한 인지 수준의 발달과 협력학습이라는 소통과 배려의 융합인재소양에 긍정적인 영향을 끼친 것으로 나타났다.

홍삼 및 흑삼의 제조 시 증숙 및 건조온도가 Benzo(a)pyrene 생성에 미치는 영향 (Effects of Steam- and Dry-processing Temperatures on the Benzo(a)pyrene Content of Black and Red Ginseng)

  • 조은정;강신정;김애정
    • 한국식품영양학회지
    • /
    • 제22권2호
    • /
    • pp.199-204
    • /
    • 2009
  • For the purpose of developing a safe & hygienic manufacturing method to acquire low levels of benzo(a)pyrene in black and red ginseng products, this study investigated the effects of steam- and dry-processing temperatures on benzo(a)pyrene production in ginseng. By the red ginseng with a fix dry-process temperature of $50^{\circ}C$ and setting the steam-process temperature between $80{\sim}120^{\circ}C$, an extremely small amount(0.1 ppb) of benzo(a)pyrene was produced, indicating there was no relationship between the steam-temperature and benzo(a)pyrene production. On the other hand, when the red and black ginseng were steamed at the fixed temperature of $100^{\circ}C$ and dried at various temperatures between $50{\sim}120^{\circ}C$, the amount of benzo(a)pyrene produced was closely connected with the dry-temperature, and increased with higher drying temperatures. Upon repeating the steam and dry process nine times, in which the steam-temperature was set at $100^{\circ}C$ and the dry-temperature at $50^{\circ}C$, higher amount of benzo(a)pyrene were produced in red and black ginseng, respectively, with increasing steam- and dry-processing time. However, the level of benzo(a)pyrene still remained extremely small(below 0.12 ppb), showing a maximum amount in the black ginseng that was steamed and dried nine times. This suggests that the fine root of ginseng may be carbonized by increasing the number of times it is steam- and dry-processed. From the above results, this study determined that the optimum temperatures for manufacturing red and black ginseng products with safe levels of benzo(a)pyrene would be a temperature between 80 and $120^{\circ}C$ for steaming and a temperature less than $50^{\circ}C$ for drying.

증기터빈용 Synchro Clutch Coupling의 진동 특성 (Vibration Characteristics of a Synchro Clutch Coupling for Steam Turbine)

  • 심응구;이태구;문승재;이재헌
    • 플랜트 저널
    • /
    • 제4권3호
    • /
    • pp.66-72
    • /
    • 2008
  • The vibration of steam turbine is caused by Mass unbalance, Shaft misalignment, Oil whip and rubbing etc. But in turbine which is normally operated and maintained, the Mass unbalance component possesses the greatest portion. Our power plant has two steam turbines in capacity of 200 MW and 135 MW respectively and each turbine is supported by 6 journal bearings. However, we had many difficulties because the vibration amplitude of #3 and #4 Bearings was high during the start-up and operation mode change of steam turbine. But, with this study, we completely solved the vibration problem caused by the mass unbalance of #1 steam turbine. Until a recent date, #3 and #4 bearings which support high pressure turbine for #1 steam turbine had shown about $135{\mu}m$ in vibration amplitude (sometimes it increased to $221{\mu}m$ maximum. alarm: 6 mils, trip: 9 mils) at base load. After applying the study, they decreased to about $45{\mu}m$ maximum. It is a result from that we did not change the setting value of bearing alignment and only changed the assembly position of internal parts in Synchro clutch coupling rachet wheel which links between high pressure turbine and low pressure turbine, and increased the internal gap and machining of the Pawl cage surface. In the operation of steam turbine, if the vibration value increases by 1X, we should reduce the vibration of bearing by weight balancing. However, unless the vibration of bearing is declined by the balancing, we will have to disassemble and check the component and find the cause. In this study, we researched the way to lower mass unbalance that is 1X vibration component which has the greatest portion of vibration generated by steam turbine and we got good result by applying the findings of this study.

  • PDF

증기터빈용 Synchro Clutch Coupling에서 발생하는 진동에 관한 연구 (A study on Mass Unbalance Vibration Generated from 200MW Steam Turbine Synchro Clutch Coupling)

  • 심응구;김영균;문승재;이재헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.232-235
    • /
    • 2008
  • The vibration of steam turbine is caused by Mass Unbalance, Shaft Misalignment, Oil Whip and Rubbing etc. but in turbine which is normally operated and maintained, the Mass Unbalance component possesses the greatest portion. Our power plant has two steam turbines in capacity of 200MW and 135MW respectively and each turbine is supported by 6 journal bearings. However, we had many difficulties because the vibration amplitude of No 3 and 4 Bearings was high during the start-up and operation mode change of steam turbine. But, with this study, we completely solved the vibration problem caused by the mass unbalance of No 1 steam turbine. Until a recent date, No 3 and 4 bearings which support high pressure turbine for No 1 steam turbine had shown about 135${\mu}$m in vibration amplitude (sometimes it increased to 221${\mu}$m maximum. alarm: 6mils, trip: 9mils) at base load. After applying the study, they decreased to about 40${\mu}$m maximum. It is a result from that we did not change the setting value of Bearing Alignment and only changed the assembly position of internal parts in Synchro Clutch Coupling Rachet Wheel which links between high pressure turbine and low pressure turbine, and increased the internal gap and machining of the Pawl stopper surface. In the operation of steam turbine, if the vibration value increases by 1X, we should reduce the vibration of bearing by weight balancing. However, unless the vibration of bearing is declined by the balancing, we will have to disassemble and check the component and find the cause. In this study, We researched the way to lower mass unbalance that is 1X vibration component which has the greatest portion of vibration generated by steam turbine and We got good result by applying the findings of this study.

  • PDF

The property of inorganic insulation material depending on CSA contents and atmospheric steam curing condition

  • Kim, Tae-Yeon;Chu, Yong-Sik;Seo, Sung-Kwan;Yoon, Seog-Young
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.407-412
    • /
    • 2018
  • In this study, we have made a cement based inorganic insulation material and added CSA (Hauyne Clinker) to reduce the demolding time and enhance the handling workability. CSA contents were varied by 0%, 1%, 3%, 5% and the atmospheric steam curing was tried for enhancing the compressive strength. As the CSA contents are increased to 5%, a rapid reaction of hydration caused the sinking of the slurry. So, the setting-retarder was added to control the reaction of hydration. By this, the sinking of the slurry was controlled but the height of the green body after expansions was a little bit lowered. In the CSA-added slurry, it was possible to demold within 24 hours and in case of CSA 5%-added, the sufficient workability was secured. Atmospheric steam curing (temperatures $-40{\sim}80^{\circ}C$, for 6~10 hrs.) was attempted to improve the compressive strength and found that an excellent strength of 0.25 MPa was achieved at $80^{\circ}C$ for 8 hrs. Specific gravity was about $0.12{\sim}0.13g/cm^3$ and heat conductivity was about 0.045 W/mK in all specimens. This strategy significantly improves the compressive strength of CSA 5%-added specimen up to 25% compared to without CSA added specimen.