• Title/Summary/Keyword: steam reforming reaction

Search Result 170, Processing Time 0.028 seconds

A Study on the Steam-Hydrocarbon Reforming Catalysts (탄화수소의 수증기개질 촉매에 관한 연구)

  • Lee Mook Kwon;Tae Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.55-63
    • /
    • 1971
  • In this study, several nickel catalysts for the steam-hydrocarbon reforming process were prepared from various nickel salt, magnesium oxide, alumina and kaolinite. The activity and strength of the catalysts were investigated. 1. The proper composition of the calcined catalysts are: NiO (5-15%)-MgO(10-20%)-$Al_2O_3$(10-40%)-Kaolinite(50-80%). 2. The admixed or cosedimented ingredients of the catalysts was pelletized and calcinated at 1000 or $1150^{\circ}C$. Calcination at $1150^{\circ}C$ for an hour was optimum. 3. The water to oil ratio (W/O) for reforming of hexane should be above 7 mole/mole. As the W/O increases, more carbon dioxide and hydrogen, but less carbon monoxide was produced. Also carbon deposition become lessen at higher W/O. 4. Maximum conversion had attained at about $850^{\circ}C$. As the reaction temperature increases, more carbon monoxide and hydrogen, but less carbon dioxide and lower hydrocarbon was produced. 5. The percent conversion at $850^{\circ}C$ was about 80%, using a catalyst which the nickel oxide content are 5%.

  • PDF

Steam Reforming of Methane for Chemical Heat Storage As a Solar Heat Storage(Part 2. Parameters Effect on Methane Conversion) (화학축열을 통한 태양열 저장을 위한 메탄의 스팀개질 반응 특성(Part 2. 조업변수의 영향))

  • Yang, D.H.;Chung, C.H.;Han, G.Y.;Seo, T.B.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.29-35
    • /
    • 2001
  • The chemical heat storage as the one way of utilization for high temperature solar energy was considered. The stram reforming reaction of methane was chosen for endothermic reaction. The reactor was made of stainless steel tube and it's dimension was 0.635 cm I.D. and 30 cm long, coiled tube because of the geometry requirement of solar receiver The effects of space velocity and reactants mole ratio on the methane conversion and CO selectivity were examined. From the experimental results, the optimum steam/methane mole ratio was determined.

  • PDF

Analysis of Catalytic Cracking and Steam Reforming Technologies for Improving Endothermic Reaction Performance of Hydrocarbon Aviation Fuels (탄화수소 항공유의 흡열반응 성능향상을 위한 촉매 분해 및 수증기 개질 기술분석)

  • Lee, Hyung Ju
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.98-109
    • /
    • 2021
  • Fundamental parameters describing overall operational characteristics of active cooling systems of a hypersonic flight vehicle are mainly classified into endothermic hydrocarbon fuels, regenerative cooling channels, and materials and system structures. Of primary importance is the improvement of endothermic performance of hydrocarbon aviation fuels in a series of studies developing efficient regenerative cooling systems. In a previous study, therefore, an extensive technical analysis has been carried out on thermal decomposition characteristics of liquid hydrocarbon fuels. As a subsequent study, catalytic cracking and steam reforming technologies have been reviewed to find a way for the improvement of endothermic reaction performance of hydrocarbon aviation fuels.

A simulation study on synthesis gas process optimization for FT(Fischer-Tropsh) synthesis (FT(Fischer-Tropsh) 합성유 제조를 위한 합성가스 공정 최적화 연구)

  • Kim, Yong-Heon;Lee, Won-Su;Lee, Heoung-Yeoun;Koo, Kee-Young;Song, In-Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.888-888
    • /
    • 2009
  • A simulation study on SCR (Steam Carbon dioxide Reforming) process in gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) process was carried out in order to find optimum reaction conditions for GTL (gas-to-liquid) process reaction. Optimum SCR operating conditions for synthesis gas to FT (Fischer-Tropsch) process were determined by changing reaction variables such as feed temperature and pressure. During the simulation, overall synthesis process was assumed to proceed under steady-state conditions. It was also assumed that physical properties of reaction medium were governed by RKS (Redlich-Kwong-Soave) equation. SCR process was considered as reaction models for synthesis gas in GTL proess. The effect of temperature and pressure on SCR process $H_2$/CO ratio and the effect of reaction pressure on SCR reaction were mainly examined. Simulation results were also compared to experimental results to confirm the reliability of simulation model. Simulation results were reasonably well matched with experimental results.

  • PDF

Investigation of the coaxial cylindrical steam reformer for fuel cell applications (연료전지 적용을 위한 동축원통형 수증기 개질기의 연구)

  • Park, Joon-Geun;Lee, Shin-Ku;Bae, Joong-Myeon;Kime, Myoung-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.113-116
    • /
    • 2007
  • Performance of a steam reformer can be improved by using a coaxial cylindrical reactor, because the design can enhance the heat transfer for the steam reforming reaction, which is the one of main rate-determining steps of overall reactions. The objective of this study is to investigate the coaxial cylindrical reactor numerically. Pseudo-homogeneous model and one medium approach are incorporated for the chemical reactions, and models are validated with experimental results. The catalyst of the coaxial cylindrical reactor is 67% for one of the cylindrical reactor, but fuel conversion of the coaxial cylindrical reactor is increased by 10%. Heat flux profiles are investigated by modified Nusselt number and heat flux which is transported from the product gas to the catalyst bed affecting performance of the steam reformer.

  • PDF

Studies on Activity and Characteristics of CuO/ZnO/TiO2 Catalysts for Methanol Steam Reforming (메탄올 수증기 개질반응을 위한 CuO/ZnO/TiO2계 촉매의 활성 및 특성에 관한 연구)

  • Koh, Hyoung-Lim;Kim, Tae-Won;Lee, Jihn-Koo;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.956-960
    • /
    • 1998
  • Cu-Zn and Cu-Zn-Ti catalysts for the steam reforming of methanol were prepared. This reaction was carried out at atmospheric pressure, $250^{\circ}C$, steam/methanol molar ratio 1.5, and contact time 0.1 g-cat.hr/mL-feed. In case of the catalyst with 3 mol% of $TiO_2$, the activity was superior to that of catalysts without $TiO_2$. The reaction products were mainly hydrogen and carbon dioxide. It was found that catalytic activity was not related to specific surface area but affected by metallic copper area which was measured by $N_2O$ decomposition and increased with the addition of $TiO_2$ content. XPS and XRD showed that the oxidation state of zinc was not changed during reaction, but oxidation states of copper existed in Cu(0) or Cu(I).

  • PDF

Development of a Catalyst/Sorbent for Methane-Steam Reforming (메탄스팀개질반응용 촉매흡착제 개발에 관한 연구)

  • Cho, Yong-Hoon;Na, Jeong-Geol;Kim, Seong-Soo;Kim, Jin-Gul;Chung, Soo-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.307-313
    • /
    • 2006
  • In order to improve the efficiency of methane steam reforming process, a part of the system which produces hydrogen from heavy hydrocarbon resources such as coal, we combined metal catalyst with CaO sorbent and fabricated catalyst/sorbent. To increase the porosity and the compressive strength of sorbent, carbon black and ${\alpha}-alumina$ were mixed with CaO powder during preparation. The effects of sorbent composition on the physical properties were investigated by SEM, TGA, BET, XRD, abrasion strength measuring device and adsorption-desorption instrument. Sorbent with 5 wt% $Al_2O_3$ and 10 wt% carbon black showed the best physical features with $7.61kg_f$ strength and 47% $CO_2$ adsorption capability. Various metal catalysts such as Ni, Co and Fe were supported on the sorbent developed and 10 wt% Ni/sorbent was selected for methane steam reforming process based on the result of reaction experiment. The reaction system using the catalyst/sorbent showed better $H_2$ productivity compared to the detached system with catalyst and sorbent, indicating the effectiveness of the system developed in this study.

PEMFC Operation Connected with Methanol Reformer System

  • Lee, Jung-Hyun;Park, Sang-Sun;Shul, Yong-Gun;Park, Jong-Man;Kim, Dong-Hyun;Kim, Ha-Suck;Yoo, Seung-Eul
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.303-307
    • /
    • 2008
  • The studies on integrated operation of fuel cell with fuel processor are very essential prior to its commercialization. In this study, Polymer Electrolyte Membrane Fuel Cell (PEMFC) was operated with a fuel processor, which is mainly composed of two parts, methanol steam reforming reaction and preferential oxidation (PROX). In fuel processor, ICI 33-5 (CuO 50%, ZnO 33%, $Al_2O_3$ 8%, BET surface area: $66\;m^2g^{-1}$) catalyst and CuO-$CeO_2$ catalyst were used for methanol steam reforming, preferential oxidation (PROX) respectively. PEMFC was operated by hydrogen fuel generated from fuel processor. The resulting gas from PROX reactor is used to operate PEMFC equipped with our prepared anode and cathode catalyst. PtRu/C catalyst gives more tolerance to CO.

Characteristics of Heat Transfer and Chemical Reaction in Reformer Tube for Fuel Reynolds Number and Burner Gas Temperature (개질관 내부 레이놀즈 수와 버너 온도에 따른 열유동 및 반응 특성)

  • Han, Jun Hee;Yoon, Kee Bong;Kim, Ji Yoon;Lee, Seong Hyuk
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.69-74
    • /
    • 2015
  • The study investigated numerically the heat transfer and chemical reaction characteristics of a methane-steam reforming by using a 3-dimensional computational fluid dynamics (CFD) code (Fluent ver. 16.1). The fuel temperature and its species mole fractions were estimated for various Reynolds number in the reformer tube at different burner temperatures. The catalysts were modeled as the porous medium of nicrome in the reformer tube. We considered radiation effect as well as conduction and convective heat transfer because the methane-steam was reformed at very high temperature condition above 1000 K. For two different Reynolds numbers of 49,000 and 88,000 and the burner temperatures were in the range from 1,100 K to 1,300 K. At a low Reynolds number, the fuel temperature increased, leading to increase in hydrogen reforming. However, fuel temperature and hydrogen reforming decreased because of higher convective heat transfer from relatively low fuel temperature. Moreover, the hydrogen reforming also increased with burner temperature.

Restraint of carbon deposition in diesel ATR using fuel atomizer (연료 미립화기를 이용한 디젤 자열개질기 내 탄소침적 억제)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.67-70
    • /
    • 2007
  • Diesel autothermal reforming has several problems such as carbon deposition in reforming reactor, sulfur poisoning of catalyst, difficulty of aromatics decomposition and mixing problems of reactants(diesel, steam, oxygen). Severe carbon deposition causes the rapid performance degradation of reformer. Carbon deposition is formed from ethylene, carbon precursor. Ethylene was generated at the homogeneous reaction zone of the reactor entrance. This phenomenon is closely linked to the mixing of reactants. In this investigation, we try to minimize the ethylene generation at the reactor entrance atomization technique.

  • PDF